
CAN
NI-CAN™ Programmer
Reference Manual
NI-CAN Programmer Reference Manual

August 2000 Edition
Part Number 370289A-01

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,
Canada (Calgary) 403 274 9391, Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521,
China 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24,
Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406,
Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625,
Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, New Zealand 09 914 0488, Norway 32 27 73 00,
Poland 0 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085,
Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2528 7227, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the
documentation, send e-mail to techpubs@ni.com

© Copyright 1996, 2000 National Instruments Corporation. All rights reserved.

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves
the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for
any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS

ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED

BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE

CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS,
OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties,
or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

Trademarks
BridgeVIEW™, CVI™, LabVIEW™, National Instruments™, NI-CAN™, ni.com™, and RTSI™ are trademarks of National
Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
The product described in this manual may be protected by one or more U.S. patents: U.S. Patent No. 5,938,754.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing for a level of reliability suitable for use in
or in connection with surgical implants or as critical components in any life support systems whose failure to perform
can reasonably be expected to cause significant injury to a human. Applications of National Instruments products
involving medical or clinical treatment can create a potential for death or bodily injury caused by product failure, or by
errors on the part of the user or application designer. Because each end-user system is customized and differs from
National Instruments testing platforms and because a user or application designer may use National Instruments products
in combination with other products in a manner not evaluated or contemplated by National Instruments, the user or
application designer is ultimately responsible for verifying and validating the suitability of National Instruments products
whenever National Instruments products are incorporated in a system or application, including, without limitation,
the appropriate design, process and safety level of such system or application.

Compliance

FCC/Canada Radio Frequency Interference Compliance*

Determining FCC Class
The Federal Communications Commission (FCC) has rules to protect wireless communications from interference.
The FCC places digital electronics into two classes. These classes are known as Class A (for use in industrial-
commercial locations only) or Class B (for use in residential or commercial locations). Depending on where it is
operated, this product could be subject to restrictions in the FCC rules. (In Canada, the Department of
Communications (DOC), of Industry Canada, regulates wireless interference in much the same way.)

Digital electronics emit weak signals during normal operation that can affect radio, television, or other wireless
products. By examining the product you purchased, you can determine the FCC Class and therefore which of the two
FCC/DOC Warnings apply in the following sections. (Some products may not be labelled at all for FCC, if so the
reader should then assume these are Class A devices.)

FCC Class A products only display a simple warning statement of one paragraph in length regarding interference and
undesired operation. Most of our products are FCC Class A. The FCC rules have restrictions regarding the locations
where FCC Class A products can be operated.

FCC Class B products display either a FCC ID code, starting with the letters EXN,
or the FCC Class B compliance mark that appears as shown here on the right.

The curious reader can consult the FCC web site http://www.fcc.gov for more
information.

FCC/DOC Warnings
This equipment generates and uses radio frequency energy and, if not installed and used in strict accordance with the
instructions in this manual and the CE Mark Declaration of Conformity**, may cause interference to radio and
television reception. Classification requirements are the same for the Federal Communications Commission (FCC)
and the Canadian Department of Communications (DOC).

Changes or modifications not expressly approved by National Instruments could void the user’s authority to operate
the equipment under the FCC Rules.

Class A
Federal Communications Commission

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15
of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the
equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency
energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to
radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.

Canadian Department of Communications
This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

Cet appareil numérique de la classe A respecte toutes les exigences du Règlement sur le matériel brouilleur du
Canada.

Class B
Federal Communications Commission

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15
of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a
residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed
and used in accordance with the instructions, may cause harmful interference to radio communications. However,
there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful

interference to radio or television reception, which can be determined by turning the equipment off and on, the user
is encouraged to try to correct the interference by one or more of the following measures:
• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.

Canadian Department of Communications
This Class B digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

Cet appareil numérique de la classe B respecte toutes les exigences du Règlement sur le matériel brouilleur du
Canada.

European Union - Compliance to EEC Directives
Readers in the EU/EEC/EEA must refer to the Manufacturer's Declaration of Conformity (DoC) for information**
pertaining to the CE Mark compliance scheme. The Manufacturer includes a DoC for most every hardware product
except for those bought for OEMs, if also available from an original manufacturer that also markets in the EU, or
where compliance is not required as for electrically benign apparatus or cables.

* Certain exemptions may apply in the USA, see FCC Rules §15.103 Exempted devices, and §15.105(c). Also
available in sections of CFR 47.

** The CE Mark Declaration of Conformity will contain important supplementary information and instructions for
the user or installer.

© National Instruments Corporation vii NI-CAN Programmer Reference Manual

Contents

About This Manual
How to Use the Manual Set ...xi
Conventions Used in This Manual...xi
Related Documentation..xii

Chapter 1
NI-CAN Host Data Types

Chapter 2
NI-CAN Functions

ncAction...2-3
ncCloseObject ..2-6
ncConfig...2-7
ncCreateNotification ..2-12
ncCreateOccurrence...2-17
ncGetAttribute ...2-20
ncOpenObject ..2-22
ncRead ...2-25
ncReadMult..2-30
ncReset...2-33
ncSetAttribute ..2-34
ncWaitForState ..2-36
ncWrite...2-38

Chapter 3
NI-CAN Objects

CAN Network Interface Object ...3-2
CAN Object ...3-17

Chapter 4
RTSI Programming

Description...4-1
Attributes ...4-2

NC_ATTR_RTSI_MODE (RTSI Mode) ..4-2
NC_RTSI_NONE (Disable RTSI) ..4-2
NC_RTSI_TX_ON_IN (On RTSI Input—Transmit CAN Frame).................4-2

Contents

NI-CAN Programmer Reference Manual viii ni.com

NC_RTSI_TIME_ON_IN (On RTSI Input—Timestamp RTSI event).......... 4-3
NC_RTSI_OUT_ON_RX (RTSI Output on Receiving CAN frame) 4-3
NC_RTSI_OUT_ON_TX (RTSI Output on Transmitting CAN frame) 4-4
NC_RTSI_OUT_ACTION_ONLY (RTSI Output on ncAction call) 4-4
NC_ATTR_RTSI_SIGNAL (RTSI Line Number)... 4-4
NC_ATTR_RTSI_SIG_BEHAV (RTSI Behavior).. 4-4
NC_ATTR_RTSI_FRAME (UserRTSIFrame) .. 4-5
NC_ATTR_RTSI_SKIP (RTSI Skip)... 4-5

Examples ... 4-5

Appendix A
NI-CAN Object States

Appendix B
Status Codes and Qualifiers

Appendix C
Technical Support Resources

Glossary

Index

Figures
Figure 3-1. Example of Periodic Transmission ... 3-32
Figure 3-2. Example of Polling Remote Data Using ncWrite 3-32
Figure 3-3. Example of Periodic Polling of Remote Data....................................... 3-33

Figure A-1. State Format .. A-1

Figure B-1. Status Format .. B-1

Tables
Table 1-1. NI-CAN Host Data Types .. 1-1

Table 2-1. NI-CAN Functions.. 2-2
Table 2-2. Actions Supported by the CAN Network Interface Object 2-4
Table 2-3. Actions Supported by the CAN Object... 2-5
Table 2-4. NCTYPE_CAN_FRAME_TIMED Field Names 2-27
Table 2-5. NCTYPE_CAN_DATA_TIMED Field Names 2-29

Contents

© National Instruments Corporation ix NI-CAN Programmer Reference Manual

Table 2-6. NCTYPE_CAN_FRAME Field Names..2-39
Table 2-7. NCTYPE_CAN_DATA Field Name ..2-40

Table A-1. NI-CAN Object States ..A-1

Table B-1. Determining Severity of Status ...B-2
Table B-2. Summary of Status Codes ..B-4

© National Instruments Corporation xi NI-CAN Programmer Reference Manual

About This Manual

This manual is a programming reference for functions, objects, and
data types in the NI-CAN software. This manual assumes that you are
already familiar with the Windows system you are using.

How to Use the Manual Set
Use the getting started manual to install and configure your CAN hardware
and NI-CAN software.

Use the NI-CAN User Manual to learn the basics of NI-CAN and how to
develop an application. The user manual also contains debugging
information and examples.

Use this NI-CAN Programmer Reference Manual for specific information
about each NI-CAN function and object, such as format, parameters, and
possible errors.

Conventions Used in This Manual
The following conventions appear in this manual:

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click on in the software,
such as menu items and dialog box options. Bold text also denotes
parameter names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

About This Manual

NI-CAN Programmer Reference Manual xii ni.com

Related Documentation
The following documents contain information that you might find helpful
as you read this manual:

• ANSI/ISO Standard 11898-1993, Road Vehicles—Interchange of
Digital Information—Controller Area Network (CAN) for High-Speed
Communication

• ANSI/ISO Standard 11519-1, 2 Road Vehicles—Low Speed Serial
Data Communications, Part 1 and 2

• CAN Specification Version 2.0, 1991, Robert Bosch Gmbh., Postfach
500, D-7000 Stuttgart 1

• LabVIEW Online Reference

• Win32 Software Development Kit (SDK) online help

© National Instruments Corporation 1-1 NI-CAN Programmer Reference Manual

1
NI-CAN Host Data Types

This chapter describes the host data types used by NI-CAN functions and objects.

All host data types are given specific names for reference within this manual. In general,
all NI-CAN host data types begin with NCTYPE_.

Table 1-1. NI-CAN Host Data Types

NI-CAN
Data Type

ANSI C
Binding

LabVIEW
Binding Description

NCTYPE_type_P NCTYPE_type * N/A Location of variable with
type type.

NCTYPE_INT8 signed char I8 8-bit signed integer.

NCTYPE_INT16 signed short I16 16-bit signed integer.

NCTYPE_INT32 signed long I32 32-bit signed integer.

NCTYPE_UINT8 unsigned char U8 8-bit unsigned integer.

NCTYPE_UINT16 unsigned short U16 16-bit unsigned integer.

NCTYPE_UINT32 unsigned long U32 32-bit unsigned integer.

NCTYPE_BOOL NCTYPE_UINT8 TF (boolean) Boolean value. In ANSI C,
constants NC_TRUE (1)
and NC_FALSE (0) are
used for comparisons.

NCTYPE_STRING char *, array of
characters
terminated by null
character \0

abc (string) ASCII character string.

NCTYPE_ANY_P void * N/A Reference to variable of
unknown type, used in
cases where actual data
type may vary depending
on particular context.

Chapter 1 NI-CAN Host Data Types

NI-CAN Programmer Reference Manual 1-2 ni.com

NCTYPE_OBJH NCTYPE_UINT32 Type definition
ObjHandle (U32)

Handle referring to object.

NCTYPE_VERSION NCTYPE_UINT32 U32 Version number. Major,
minor, subminor, and beta
version numbers are
encoded in unsigned 32-bit
integer from high byte to
low byte. Letters are
encoded as numeric
equivalents (‘A’ is 1, ‘Z’ is
26, and so on.). Version
2.0B would be hexadecimal
02000200, and Beta version
1.4.2 beta 7 would be hex
01040207.

NCTYPE_DURATION NCTYPE_UINT32 U32 Time duration indicating
elapsed time between two
events. Time is expressed
in 1 ms increments.
10 seconds is 10000.
Special constant
NC_DURATION_NONE (0)

is used for zero
duration, and
NC_DURATION_INFINITE

(FFFFFFFF hex) is used for
infinite duration.

NCTYPE_ABS_TIME unsigned 64-bit
integer compatible
with the Win32
FILETIME type

64-bit
double-precision
floating-point(DBL)
compatible with
LabVIEW time

For information on use,
refer to ncRead function
description in Chapter 2,
NI-CAN Functions.

NCTYPE_ATTRID NCTYPE_UINT32 U32 Attribute identifier.

NCTYPE_OPCODE NCTYPE_UINT32 U32 Operation code used with
ncAction function.

Table 1-1. NI-CAN Host Data Types (Continued)

NI-CAN
Data Type

ANSI C
Binding

LabVIEW
Binding Description

Chapter 1 NI-CAN Host Data Types

© National Instruments Corporation 1-3 NI-CAN Programmer Reference Manual

NCTYPE_PROTOCOL NCTYPE_UINT32 U32 Supported device network
protocol, such as
NC_PROTOCOL_CAN (1).

NCTYPE_BAUD_RATE NCTYPE_UINT32 U32 Baud rate. 125 kb/s would
be encoded as 125000.

NCTYPE_STATE NCTYPE_UINT32 U32 Object states, encoded
as 32-bit mask (one bit
for each state). For
information, refer to
Appendix A, NI-CAN
Object States.

NCTYPE_STATUS NCTYPE_INT32 I32 Status returned from all
NI-CAN functions. Status
is zero for success, less than
zero for an error, and
greater than zero for a
warning. For information,
refer to Appendix B, Status
Codes and Qualifiers.

NCTYPE_CAN_ARBID NCTYPE_UINT32 U32 CAN arbitration ID.
30th bit is accessed
using bitmask
NC_FL_CAN_ARBID_XTD

(20000000 hex). If this bit
is clear, CAN arbitration ID
is standard (11-bit). If this
bit is set, CAN arbitration
ID is extended (29-bit).
Special constant
NC_CAN_ARBID_NONE

(CFFFFFFF hex) indicates
no CAN arbitration ID.

Table 1-1. NI-CAN Host Data Types (Continued)

NI-CAN
Data Type

ANSI C
Binding

LabVIEW
Binding Description

Chapter 1 NI-CAN Host Data Types

NI-CAN Programmer Reference Manual 1-4 ni.com

NCTYPE_CAN_FRAME struct Input terminals of
ncWriteNet.vi

Structure used with
ncWrite and CAN
Network Interface Object.
For information, refer to
description of CAN
Network Interface Object
in Chapter 3, NI-CAN
Objects.

NCTYPE_CAN_FRAME_

TIMED

struct Output terminals of
ncReadNet.vi

and
ncReadMult.vi

Structure used withncRead
and CAN Network
Interface Object. For
information, refer to
description of CAN
Network Interface Object
in Chapter 3, NI-CAN
Objects.

NCTYPE_CAN_DATA struct Input terminals of
ncWriteObj.vi

Structure used with
ncWrite and CAN Object.
For information, refer to
description of CAN Object
in Chapter 3, NI-CAN
Objects.

NCTYPE_CAN_DATA_

TIMED

struct Output terminals of
ncReadObj.vi

and
ncReadObjMult.

vi

Structure used withncRead
and CAN Object For
information, refer to
description of CAN Object
in Chapter 3, NI-CAN
Objects.

Table 1-1. NI-CAN Host Data Types (Continued)

NI-CAN
Data Type

ANSI C
Binding

LabVIEW
Binding Description

© National Instruments Corporation 2-1 NI-CAN Programmer Reference Manual

2
NI-CAN Functions

This chapter lists the NI-CAN functions and describes the format, purpose, parameters, and
return status for each function.

Unless otherwise stated, each NI-CAN function suspends execution of the calling process
until it completes.

Function Names
The functions in this chapter are listed alphabetically.

Purpose
Each function description includes a brief statement of the purpose of the function.

Format
The format section describes the format of each function for LabVIEW, and for the
C programming language.

Input and Output
The input and output parameters for each function are listed.

Description
The description section gives details about the purpose and effect of each function.

CAN Network Interface Object
The CAN Network Interface Object section gives details about using the function with the
CAN Network Interface Object.

CAN Object
The CAN Object section gives details about using the function with the CAN Object.

Return Status
After every NI-CAN function description, all possible return status codes are listed. For
complete information on status format and the qualifiers used with each status code, refer
to Appendix B, Status Codes and Qualifiers.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-2 ni.com

Examples
Each function description includes sample C language code showing how to use the function.
For more detailed examples or for example LabVIEW code, refer to the example programs
that are included with your NI-CAN software. The example programs are described in the
NI-CAN User Manual.

List of NI-CAN Functions
The following table contains an alphabetical list of the NI-CAN functions.

Table 2-1. NI-CAN Functions

Function Purpose

ncAction Perform an action on an object.

ncCloseObject Close an object.

ncConfig Configure an object prior to its use.

ncCreateNotification Create a notification callback for an object (C only).

ncCreateOccurrence Create a notification occurrence for an object
(LabVIEW only).

ncGetAttribute Get the value of an object’s attribute.

ncOpenObject Open an object.

ncRead Read the data value of an object.

ncReadMult Read multiple data values from an object.

ncReset Reset CAN interface.

ncSetAttribute Set the value of an object’s attribute.

ncWaitForState Wait for one or more states to occur in an object.

ncWrite Write the data value of an object.

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-3 NI-CAN Programmer Reference Manual

ncAction

Purpose
Perform an action on an object.

Format

LabVIEW

C
NCTYPE_STATUS ncAction(NCTYPE_OBJH ObjHandle,

NCTYPE_OPCODE Opcode,

NCTYPE_UINT32 Param)

Input
ObjHandle Object handle.
Opcode Operation code indicating which action to perform.
Param Parameter whose meaning is defined by Opcode.

Description
ncAction is a general purpose function you can use to perform an action on the object
specified by ObjHandle. Its normal use is to start and stop network communication on a
CAN Network Interface Object.

For the most frequently used and/or complex actions, NI-CAN provides functions such as
ncOpenObject and ncRead. ncAction provides an easy, general purpose way to perform
actions that are used less frequently or are relatively simple.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-4 ni.com

CAN Network Interface Object
NI-CAN propagates all actions on the CAN Network Interface Object up to all open CAN
Objects. Table 2-2 describes the actions supported by the CAN Network Interface Object.

Table 2-2. Actions Supported by the CAN Network Interface Object

Opcode Param Description

NC_OP_START

(80000001 hex)

N/A (ignored) Transitions network interface from stopped
(idle) state to started (running) state. If
network interface is already started, this
operation has no effect. When a network
interface is started, it is communicating
on the network. When you execute
NC_OP_START on a stopped CAN Network
Interface Object, NI-CAN propagates it
upward to all open higher-level CAN
Objects. Thus, you can use it to start all
higher-level network communication
simultaneously.

NC_OP_STOP

(80000002 hex)

N/A (ignored) Transitions network interface

from started state to stopped

state. If network interface is

already stopped, this operation

has no effect. When a network

interface is stopped, it is not

communicating on the network.
When you execute NC_OP_STOP on a
running CAN Network Interface
Object, NI-CAN propagates it
upward to all open higher-level
CAN Objects.

NC_OP_RESET

(80000003 hex)

N/A (ignored) Resets network interface. Stops network
interface, then resets the CAN chip to clear
the CAN error counters (clear error passive
state). Resetting includes clearing all entries
from read and write queues. NC_OP_RESET
is propagated up to all open higher-level
CAN Objects.

NC_OP_RTSI_OUT

(80000004 hex)

N/A (ignored) Output a pulse or toggle on the RTSI line
depending upon the
NC.ATTR.RTSI.SIG.BEHAV

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-5 NI-CAN Programmer Reference Manual

CAN Object
All actions performed on a CAN Object affect that CAN Object alone, and do not affect other
CAN Objects or communication as a whole. To start communications for a CAN Object, you
must first start its lower-level CAN Network Interface Object. After starting communications,
you can then use ncAction to stop and restart an individual CAN Object.

Table 2-3 describes the actions supported by the CAN Object.

Return Status
NC_SUCCESS Success (no warning or error).
NC_ERR_BAD_PARAM Invalid parameter.
NC_ERR_BAD_VALUE Invalid values for configuration attributes. Returned only when

Opcode is NC_OP_START.
NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

Example
This example assumes the following declarations:
NCTYPE_STATUS status;

NCTYPE_OBJH objh;

Start communication on a CAN Network Interface Object. Because Param is ignored for
NC_OP_START, you can use any value (this example uses 0).

status = ncAction(objh, NC_OP_START, 0);

Table 2-3. Actions Supported by the CAN Object

Opcode Param Description

NC_OP_START

(80000001 hex)

N/A (ignored) When NC_OP_STOP is used to stop a CAN
Object, NC_OP_START restarts the CAN
Object. This action does not start the CAN
Object unless the lower-level CAN Network
Interface Object is started (running).

NC_OP_STOP

(80000002 hex)

N/A (ignored) Stops the CAN Object. For example, if the
CAN Object is configured to transmit data
frames periodically, this action stops the
periodic transmissions.

NC_OP_RESET

(80000003 hex)

N/A (ignored) Resets the CAN Object. Stops the CAN
Object, then clears all entries from read and
write queues.

NC_OP_RTSI_OUT

(80000004 hex)

N/A (ignored) Output a pulse or toggle on the RTSI line
depending upon the
NC.ATTR.RTSI.SIG.BEHAV

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-6 ni.com

ncCloseObject

Purpose
Close an object.

Format

LabVIEW

C
NCTYPE_STATUS ncCloseObject(NCTYPE_OBJH ObjHandle)

Input
ObjHandle Object handle.

Description
ncCloseObject closes an object when it no longer needs to be in use, such as when the
application is about to exit. When an object is closed, NI-CAN stops all pending operations
and clears RTSI configuration for the object, and you can no longer use the ObjHandle in
your application.

CAN Network Interface Object
ObjHandle refers to an open CAN Network Interface Object.

CAN Object
ObjHandle refers to an open CAN Object.

Return Status
NC_SUCCESS Success (no warning or error).
NC_ERR_BAD_PARAM Invalid parameter.
NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

Example
This example assumes the following declarations:
NCTYPE_STATUS status;

NCTYPE_OBJH objh;

Close an object.
status = ncCloseObject (objh);

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-7 NI-CAN Programmer Reference Manual

ncConfig

Purpose
Configure an object before using it.

Format

LabVIEW

C
NCTYPE_STATUS ncConfig(NCTYPE_STRING ObjName,

NCTYPE_UINT32 NumAttrs,
NCTYPE_ATTRID_P AttrIdList,
NCTYPE_UINT32_P AttrValueList)

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-8 ni.com

Input
ObjName ASCII name of the object to configure.
NumAttrs Number of configuration attributes (C only).
AttrIdList List of configuration attribute identifiers (C only).
AttrValueList List of configuration attribute values (C only).
ConfigCluster Cluster of object-specific configuration attribute values

(LabVIEW only).
RTSIConfigCluster Cluster of object-specific RTSI configuration attribute values

(LabVIEW only). This is an optimal input.

Description
ncConfig initializes the configuration attributes of an object before opening it. If you have
configured objects using the NI-CAN Configuration utility, you might not need to call this
function in your application. For any object, ncConfig overrides the configuration specified
in the NI-CAN Configuration utility, if any. ncConfig also initiates a cable-detect test and
reports any configuration errors for the new PCMCIA-CAN cards that support all types of
National Instruments PCMCIA-CAN cables. For example, you can attach a high-speed cable
and communicate with high-speed devices at rates up to 1MB/sec. Using the same PCMCIA
card you can attach a low-speed cable, fault tolerant up to 125Kbits/sec, and communicate
with low-speed devices.

ObjName uses the same object hierarchy syntax as ncOpenObject; it cannot be a
user-defined alias.

NumAttr indicates the number of configuration attributes in AttrIdList and
AttrValueList. AttrIdList is an array of attribute IDs, and AttrValueList is an array
of values. The attributes in AttrIdList must have Config permissions in the description of
the object. The host data type for each value in AttrValueList is NCTYPE_UINT32, which
all configuration attributes can use.

Attributes with Config permissions must be initialized prior to opening the object, and
cannot be changed using ncSetAttribute.

Using the LabVIEW Configuration Functions
The LabVIEW configuration functions do not require the input parameters AttrIdList and
NumAttrs. The configuration attribute values are instead provided in an object-specific
cluster. Controls for these configuration clusters can be found in the NI-CAN Controls palette,
one for the CAN Network Interface Object (ncNetAttr.ctl), one for the CAN Object
(ncObjAttr.ctl), one for RTSI (ncCANRtsiAttr.ctl) and one for DAQ/CAN
synchronization configuration (CAN/DAQConfig.ctl) . Note that the attribute names in the
RTSI configuration cluster are made descriptive for easy understandibility.

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-9 NI-CAN Programmer Reference Manual

The ConfigCluster input can be programmed in one of the following ways:

• Place the appropriate control on your front panel, then wire that control into the
ConfigCluster input.

• Right-click on the ConfigCluster input and select Create Control. This control will
not maintain the format, defaults, or description of the original.

• Right-click on the ConfigCluster input and select Create Constant. This constant
will not maintain the format, defaults, or description of the original.

CAN Network Interface Object
The following are the Config attributes of the CAN Network Interface Object:

NC_ATTR_BAUD_RATE (Baud Rate)
NC_ATTR_START_ON_OPEN (Start on Open)
NC_ATTR_READ_Q_LEN (Read Queue Length)
NC_ATTR_WRITE_Q_LEN (Write Queue Length)
NC_ATTR_CAN_COMP_STD (Standard Comparator)
NC_ATTR_CAN_MASK_STD (Standard Mask)
NC_ATTR_CAN_COMP_XTD (Extended Comparator)
NC_ATTR_CAN_MASK_XTD (Extended Mask)
NC_ATTR_LOG_COMM_ERRS (Low-speed CAN only)
NC_ATTR_RTSI_MODE (RTSI Mode)
NC_ATTR_RTSI_SIGNAL (RTSI Line Selector)
NC_ATTR_RTSI_SIG_BEHAV (RTSI Signal Behavior)
NC_ATTR_RTSI_SKIP (Number of RTSI Triggers to Skip)
NC_ATTR_READ_MULT_SIZE (Size to Be Used with Notifications or Occurances)

For more information on these configuration attributes, as well as usage of ObjName, refer to
the CAN Network Interface Object section of Chapter 3, NI-CAN Objects.

CAN Object
The following are the Config attributes of the CAN Object:

NC_ATTR_PERIOD (Period)
NC_ATTR_READ_Q_LEN (Read Queue Length)
NC_ATTR_WRITE_Q_LEN (Write Queue Length)
NC_ATTR_RX_CHANGES_ONLY (Receive Changes Only)
NC_ATTR_COMM_TYPE (Communication Type)
NC_ATTR_CAN_TX_RESPONSE (Transmit by Response)
NC_ATTR_CAN_DATA_LENGTH (Data Length)
NC_ATTR_RTSI_MODE (RTSI Mode)
NC_ATTR_RTSI_SIGNAL (RTSI Line Selector)
NC_ATTR_RTSI_SIG_BEHAV (RTSI Signal Behavior)
NC_ATTR_RTSI_SKIP (Number of RTSI Triggers to Skip)

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-10 ni.com

NC_ATTR_READ_MULT_SIZE (Size to Be Used with Notifications or Occurances)
NC_ATTR_RTSI_FRAME (User-Defined Data Frame)

For more information on these configuration attributes, as well as usage of ObjName, refer to
the CAN Network Interface Object section of Chapter 3, NI-CAN Objects.

Return Status
NC_SUCCESS Success (no warning or error).
NC_ERR_BAD_NAME Invalid or unrecognized name in ObjName.
NC_ERR_BAD_PARAM Invalid parameter.
NC_ERR_ALREADY_OPEN Object already opened.
NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.
NC_ERR_BAD_VALUE Invalid values for configuration attributes.

Example
This example assumes the following declarations:
NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_ATTRID AttrIdList[8];

NCTYPE_UINT32 AttrValueList[8];

Configure a CAN Network Interface Object.

AttrIdList[0] = NC_ATTR_BAUD_RATE;

AttrValueList[0] = 125000;

AttrIdList[1] = NC_ATTR_START_ON_OPEN

AttrValueList[1] = NC_TRUE;

AttrIdList[2] = NC_ATTR_READ_Q_LEN;

AttrValueList[2] = 10;

AttrIdList[3] = NC_ATTR_WRITE_Q_LEN;

AttrValueList[3] = 10;

AttrIdList[4] = NC_ATTR_CAN_COMP_STD;

AttrValueList[4] = 0;

AttrIdList[5] = NC_ATTR_CAN_MASK_STD;

AttrValueList[5] = 0;

AttrIdList[6] = NC_ATTR_CAN_COMP_XTD;

AttrValueList[6] = 0;

AttrIdList[7] = NC_ATTR_CAN_MASK_XTD;

AttrValueList[7] = 0;

status = ncConfig ("CAN0", 8, AttrIdList, AttrValueList);

Configure a CAN Interface Object for low-speed CAN.

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-11 NI-CAN Programmer Reference Manual

All of the above AttrIdList and AttrValueList (as needed) as well as the following:

AttrIdList[8] = NC_ATTR_LOG_COMM_ERRS;

AttrValueList[8] = NC_TRUE;

Configure RTSI for Network Interface Object.

All of the above AttrIdList and AttrValueList (as needed) as well as the following:

AttrIdList[8] = NC_ATTR_RTSI_MODE;

AttrValueList[8] = NC_RTSI_OUT_ON_TX;

AttrIdList[9] = NC_ATTR_RTSI_SIGNAL;

AttrValueList[9] = 4;

AttrIdList[10] = NC_ATTR_RTSI_SIG_BEHAV;

AttrValueList[10] = NC_RTSI_SIG_PULSE;

AttrIdList[11] = NC_ATTR_RTSI_SKIP;

Configure RTSI for CAN Object.

AttrIdList[7] = NC_ATTR_RTSI_MODE;

AttrValueList[7] = NC_RTSI_TIME_ON_IN;

AttrIdList[8] = NC_ATTR_RTSI_SIGNAL;

AttrValueList[8] = 4;

AttrIdList[9] = NC_ATTR_RTSI_FRAME;

AttrValueList[9] = 0xAABBCCDD;

AttrValueList[11] = 5;

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-12 ni.com

ncCreateNotification

Purpose
Create a notification callback for an object (C only).

Format

LabVIEW
N/A (ncCreateOccurrence serves a similar purpose.)

C
NCTYPE_STATUS ncCreateNotification(NCTYPE_OBJH ObjHandle,

NCTYPE_STATE DesiredState,
NCTYPE_DURATION Timeout,
NCTYPE_ANY_P RefData,
NCTYPE_NOTIFY_CALLBACK
Callback)

Input
ObjHandle Object handle.
DesiredState States for which notification is sent.
Timeout Length of time to wait.
RefData Pointer to user-specified reference data.
Callback Address of your callback function.

Description
ncCreateNotification creates a notification callback for the object specified by
ObjHandle. The NI-CAN driver uses the notification callback to communicate state changes
to your application. The ncCreateNotification function is not applicable to LabVIEW
programming. Use the ncCreateOccurrence function to receive notifications within
LabVIEW.

This function is normally used when you want to allow other code to execute while waiting
for NI-CAN states, especially when the other code does not call NI-CAN functions. If such
background execution is not needed, the ncWaitForState function offers better overall
performance. The ncWaitForState function cannot be used at the same time as
ncCreateNotification.

Upon successful return from ncCreateNotification, the notification callback is invoked
whenever one of the states specified by DesiredState occurs in the object. If
DesiredState is zero, notifications are disabled for the object specified by ObjHandle.

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-13 NI-CAN Programmer Reference Manual

The NI-CAN driver waits up to Timeout for one of the bits set in DesiredState to
become set in the attribute NC_ATTR_STATE. You can use the special Timeout value
NC_DURATION_INFINITE to wait indefinitely.

The Callback parameter provides the address of a callback function in your application.
Within the Callback function, you can call any of the NI-CAN functions except
ncCreateNotification and ncWaitForState.

With the RefData parameter, you provide a pointer that is sent to all notifications for the
given object. This pointer normally provides reference data for use within the Callback
function. For example, when you create a notification for the NC_ST_READ_AVAIL state,
RefData is often the data pointer that you pass to ncRead to read available data. If the
callback function does not need reference data, you can set RefData to NULL.

Callback Prototype
NCTYPE_STATE _NCFUNC_ Callback (NCTYPE_OBJH ObjHandle,

NCTYPE_STATE State,
NCTYPE_STATUS Status,
NCTYPE_ANY_P RefData);

Callback Parameters
ObjHandle Object handle.
State Current state of object.
Status Object status.
RefData Pointer to your reference data.

Callback Return Value
The value you return from the callback indicates the desired states to re-enable for
notification. If you no longer want to receive notifications for the callback, return a value
of zero.

If you return a state from the callback, and that state is still set in the NC_ATTR_STATE
attribute, the callback is invoked again immediately after it returns. For example, if you return
NC_ST_READ_AVAIL when the read queue has not been emptied, the callback is invoked
again.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-14 ni.com

Callback Description
In the prototype for Callback, _NCFUNC_ ensures a proper calling scheme between the
NI-CAN driver and your callback.

The Callback function executes in a separate thread in your process. Therefore, it has access
to any process global data, but not to thread local data. If the callback needs to access global
data, you must protect that access using synchronization primitives (such as semaphores),
because the callback is running in a different thread context. Alternatively, you can avoid the
issue of data protection entirely if the callback simply posts a message to your application
using the Win32 PostMessage function. For complete information on multithreading issues,
refer to the Win32 Software Development Kit (SDK) online help.

The ObjHandle is the same object handle passed to ncCreateNotification. It identifies
the object generating the notification, which is useful when you use the same callback
function for notifications from multiple objects.

The State parameter holds the current state of the object that generated the notification
(NC_ATTR_STATE attribute). If the Timeout passed to ncCreateNotification expires
before the desired states occur, the NI-CAN driver invokes the callback with State equal
to zero.

The Status parameter holds the current status of the object. If the notification is sent for the
background error and warning states (NC_ST_ERROR or NC_ST_WARNING), Status holds the
background status attribute (NC_ATTR_STATUS) of the object. If an error occurs with the
notification, State is zero and Status holds the error status. The most common notification
error occurs when the Timeout passed to ncCreateNotification expires before the
desired states occur (NC_ERR_TIMEOUT status code with NC_QUAL_TIMO_FUNCTION

qualifier). If no background error or warning is reported, and no notification error occurred,
Status is NC_SUCCESS.

The RefData parameter is the same pointer passed to ncCreateNotification, and it
accesses reference data for the Callback function.

CAN Network Interface Object
The following states apply to the CAN Network Interface Object:
NC_ST_READ_AVAIL Frame received, available for ncRead.
NC_ST_WRITE_SUCCESS Frames written with ncWrite were successfully transmitted.
NC_ST_STOPPED Communication stopped.
NC_ST_ERROR Error occurred in background.
NC_ST_WARNING Warning occurred in background.
NC_ST_READ_MULT Multiple frames available in Read Queue (to be used with

ncReadMult).

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-15 NI-CAN Programmer Reference Manual

For more information on these states and the bit values used for each, refer to Appendix A,
NI-CAN Object States.

CAN Object
The following states apply to the CAN Object:
NC_ST_READ_AVAIL Data received, available for ncRead.
NC_ST_WRITE_SUCCESS Data or remote frames written with ncWrite were successfully

transmitted.
NC_ST_STOPPED CAN Object behavior stopped.
NC_ST_ERROR Error occurred in background.
NC_ST_WARNING Warning occurred in background.
NC_ST_READ_MULT Multiple frames available in Read Queue (to be used with

ncReadMult).

For more information on these states and the bit values used for each, refer to Appendix A,
NI-CAN Object States.

Return Status
NC_SUCCESS Success (no warning or error).
NC_ERR_BAD_PARAM Invalid parameter.
NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

Example
Create a notification for the NC_ST_READ_AVAIL state.
NCTYPE_STATE _NCFUNC_ MyCallback (NCTYPE_OBJH ObjHandle,

NCTYPE_STATE State,

NCTYPE_STATUS Status,

NCTYPE_ANY_P RefData){
.

.

.

}

void main() {
NCTYPE_STATUS status;
NCTYPE_OBJH objh
.

.

.

/* Create notification to handle data available in read queue. The

notification waits indefinitely. No RefData is used.*/

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-16 ni.com

status = ncCreateNotification (objh, NC_ST_READ_AVAIL,

NC_DURATION_INFINITE, NULL, MyCallback);

.

.

.

}

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-17 NI-CAN Programmer Reference Manual

ncCreateOccurrence

Purpose
Create a notification occurrence for an object (LabVIEW only).

Format

LabVIEW

C
N/A (ncCreateNotification serves a similar purpose.)

Input
ObjHandle Object handle.
DesiredState States for which notification is sent.

Output
Occurrence Occurrence that can be used with LabVIEW Wait on

Occurrence VI.

Description
ncCreateOccurrence creates a notification occurrence for the object specified by
ObjHandle. The NI-CAN driver uses the occurrence callback to communicate state changes
to your application. The ncCreateOccurrence function is not applicable to C
programming. Use the ncCreateNotification function to receive notifications within C.

This function is normally used when you want to allow other code to execute while waiting
for NI-CAN states, especially when the other code does not call NI-CAN functions. If such
background execution is not needed, the ncWaitForState function offers better overall
performance. The ncWaitForState function cannot be used at the same time as
ncCreateOccurrence.

Upon successful return from ncCreateOccurrence, the notification occurrence is invoked
whenever one of the states specified by DesiredState occurs in the object. If
DesiredState is zero, notifications are disabled for the object specified by ObjHandle.

The Occurrence output is normally wired into the LabVIEW Wait on Occurrence VI.
Wait on Occurrence takes the Occurrence, and also a timeout and flag indicating whether

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-18 ni.com

to ignore a pending state. For more information on Wait On Occurrence, refer to the
LabVIEW Online Reference.

When Wait on Occurrence completes, you should execute code to handle the
DesiredState. For example:

1. if DesiredState is NC_ST_READ_AVAIL, you should call ncRead to read the available
data.

2. if DesiredState is NC_ST_READ_MULT, you should call ncReadMult to read the
available data.

After it has been created, the Occurrence will be set each time a DesiredState goes from
false to true. When you no longer want to wait on the Occurrence (for example, when
terminating your application), call ncCreateOccurrence with DesiredState zero.

CAN Network Interface Object
The following states apply to the CAN Network Interface Object:
NC_ST_READ_AVAIL Frame received, available for ncRead.
NC_ST_WRITE_SUCCESS Frames written with ncWrite were successfully transmitted.
NC_ST_STOPPED Communication stopped.
NC_ST_ERROR Error occurred in background.
NC_ST_WARNING Warning occurred in background.
NC_ST_READ_MULT Multiple frames available in Read Queue for ncReadMult.

For more information on these states and the bit values used for each, refer to Appendix A,
NI-CAN Object States.

CAN Object
The following states apply to the CAN Object:
NC_ST_READ_AVAIL Data received, available for ncRead.
NC_ST_WRITE_SUCCESS Data or remote frames written with ncWrite were successfully

transmitted.
NC_ST_STOPPED CAN Object behavior stopped.
NC_ST_ERROR Error occurred in background.
NC_ST_WARNING Warning occurred in background.
NC_ST_READ_MULT Multiple frames available in Read Queue for ncReadMult.

For more information on these states and the bit values used for each, refer to Appendix A,
NI-CAN Object States.

Return Status
NC_SUCCESS Success (no warning or error).
NC_ERR_BAD_PARAM Invalid parameter.
NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-19 NI-CAN Programmer Reference Manual

Example
Create an occurrence that sets when data is available to be read. Inside a loop, read a CAN
frame whenever the occurrence sets. If the occurrence times out after 10 seconds, break from
the loop.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-20 ni.com

ncGetAttribute

Purpose
Get the value of an object attribute.

Format

LabVIEW

C
NCTYPE_STATUS ncGetAttribute(NCTYPE_OBJH ObjHandle,

NCTYPE_ATTRID AttrId,
NCTYPE_UINT32 AttrSize,
NCTYPE_ANY_P AttrPtr)

Input
ObjHandle Object handle.
AttrId Identifier of the attribute to get.
AttrSize Size of the attribute in bytes (C only).

Output
AttrPtr (AttrValue) Returned attribute value. For C, the attribute value is returned to

you using the pointer AttrPtr. For LabVIEW, the attribute value
is returned to you in AttrValue.

Description
ncGetAttribute gets the value of the attribute specified by AttrId from the object
specified by ObjHandle. Within NI-CAN objects, you use attributes to access configuration
settings, status, and other information about the object, but not data.

For C, AttrPtr points to the variable used to receive the attribute value. Its type is undefined
so that you can use the appropriate host data type for AttrId. AttrSize indicates the size
of the variable that AttrPtr points to.

For LabVIEW, this function gets the value of an object’s attribute into a LabVIEW U32

(AttrValue), so a size is not needed.

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-21 NI-CAN Programmer Reference Manual

CAN Network Interface Object
For information on the attributes of the CAN Network Interface Object, refer to the CAN
Network Interface Object section of Chapter 3, NI-CAN Objects.

CAN Object
For information on the attributes of the CAN Object, refer to the CAN Object section of
Chapter 3, NI-CAN Objects.

Return Status
NC_SUCCESS Success (no warning or error).
NC_ERR_BAD_PARAM Invalid parameter.
NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

Example
This example assumes the following declarations:
NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_BAUD_RATE baudrate;

Get the value of an object’s baud rate attribute.

status = ncGetAttribute(objh, NC_ATTR_BAUD_RATE,

sizeof(baudrate), &baudrate);

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-22 ni.com

ncOpenObject

Purpose
Open an object.

Format

LabVIEW

C
NCTYPE_STATUS ncOpenObject(NCTYPE_STRING ObjName,

NCTYPE_OBJH_P ObjHandlePtr)

Input
ObjName ASCII name of the object to open.

Output
ObjHandlePtr Object handle you use with all subsequent NI-CAN
(ObjHandle out) function calls. For C, the object handle is returned to you using

the pointer ObjHandlePtr. For LabVIEW, the object handle is
returned to you in ObjHandle out.

Description
ncOpenObject takes the name of an object to open and returns a handle to that object that
you use with subsequent NI-CAN function calls.

ncOpenObject also initiates a cable detection test and reports any configuration errors for
the new PCMCIA-CAN cards that support all types of National Instruments PCMCIA-CAN
cables. If ncConfig is called before ncOpenObject, the cable detection is done at the
ncConfig call time.

You can use two syntax schemes can used for ObjName: the object hierarchy syntax and the
user-defined alias syntax.

Use the object hierarchy syntax to open any object supported by NI-CAN. The object
hierarchy syntax specifies the complete hierarchy of an object so that NI-CAN knows both
which object to open and where that object is located. This syntax consists of a list of one
or more objects in the NI-CAN object hierarchy, each separated by a double colon.

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-23 NI-CAN Programmer Reference Manual

When more than one object is required, any number of blanks can exist before or after the
double colon.

Specify objects in the NI-CAN hierarchy using a class name followed by an instance number.
The class name is a string of letters that describes the class to which the object belongs. Class
names are not case-sensitive. The instance number is a numeric value that indicates which
object of a class is being specified. Instance numbers are normally specified in decimal
notation. If hexadecimal notation is desired, the number must be preceded by “0x,” as in the
C programming language. For more information on NI-CAN object names, refer to
Chapter 3, NI-CAN Objects.

The second scheme you can use for ObjName is that of user-defined aliases. You create a
user-defined alias with the NI-CAN Configuration utility for use as an alias to a complete
object hierarchy.

The syntax for user-defined aliases consists of a single ASCII name preceded by ‘#’. The ‘#’
character differentiates user-defined aliases from the predefined names of the object
hierarchy.

Although NI-CAN can generally be used by multiple applications simultaneously, it does not
allow more than one application to open the same object. For example, if one application
opens CAN0, and another application attempts to open CAN0, the second ncOpenObject
returns the error NC_ERR_ALREADY_OPEN. It is legal for one application to open
CAN0::STD14 and another application to open CAN0::STD21, because the two objects are
considered distinct.

If ncOpenObject is successful, a handle to the newly opened object is returned. You use this
object handle for all subsequent function calls for the object.

CAN Network Interface Object
For information on the ObjName of the CAN Network Interface Object, refer to the CAN
Network Interface Object section of Chapter 3, NI-CAN Objects.

CAN Object
For information on the ObjName of the CAN Object, refer to the CAN Object section of
Chapter 3, NI-CAN Objects.

Return Status
NC_SUCCESS Success (no warning or error).
NC_ERR_BAD_NAME Invalid or unrecognized name in ObjName.
NC_ERR_BAD_PARAM Invalid parameter.
NC_ERR_ALREADY_OPEN Object already opened by another application.
NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-24 ni.com

Examples
These examples assume the following declarations:
NCTYPE_STATUS status;

NCTYPE_OBJH objh;

1. Open a CAN Network Interface Object.

status = ncOpenObject ("CAN0", &objh);

2. Open a CAN Object at standard arbitration ID 14 on CAN1

status = ncOpenObject ("CAN1::STD14", &objh);

3. Open CAN object at extended arbitration ID 2043 hex on CAN2

status = ncOpenObject ("CAN2::XTD0x2043", &objh);

4. Open an alias to the CAN Object at standard arbitration ID 14 on CAN1. This alias was
specified within the NI-CAN Configuration utility.

status = ncOpenObject ("#EngineSpeed", &objh);

5. This call returns an error of NC_ERR_BAD_NAME with qualifier 2 (80020003 hex),
because the Z makes the CAN Object name invalid.

status = ncOpenObject ("CAN0::ZTD5", &objh);

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-25 NI-CAN Programmer Reference Manual

ncRead

Purpose
Read the data value of an object.

Format

LabVIEW

C
NCTYPE_STATUS ncRead(NCTYPE_OBJH ObjHandle,

NCTYPE_UINT32 DataSize,
NCTYPE_ANY_P DataPtr)

Input
ObjHandle Object handle.
DataSize Size of the data in bytes (C only).

Output
DataPtr Data read from object. For C, the data is returned to you using the

pointer DataPtr. For LabVIEW, the data is returned to you using
object-specific output terminals.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-26 ni.com

Description
ncRead reads the data value of the object specified by ObjHandle.

For C, DataPtr points to the variable that holds the data. Its type is undefined so that you can
use the appropriate host data type. DataSize indicates the size of variable pointed to by
DataPtr, and is used to verify that the size you have available is compatible with the
configured read size for the object.

For LabVIEW, the data is returned to you using object-specific output terminals.

You use ncRead to obtain data from the read queue of an object. Because NI-CAN handles
the read queue in the background, this function does not wait for new data to arrive. To ensure
that new data is available before calling ncRead, first wait for the NC_ST_READ_AVAIL state.
The NC_ST_READ_AVAIL state transitions from false to true when NI-CAN places a new data
item into an empty read queue, and remains true until you read the last data item from the
queue.

When you call ncRead for an empty read queue (NC_ST_READ_AVAIL false), the data from
the previous call to ncRead is returned to you again, along with the NC_ERR_OLD_DATA
warning. If no data item has yet arrived for the read queue, a default data item is returned,
which consists of all zeros.

When a new data item arrives for a full queue, NI-CAN discards the item, and the next call to
ncRead returns the NC_ERR_OVERFLOW error, along with the qualifier
NC_QUAL_OVFL_READ. You can avoid this overflow behavior by setting the read queue length
to zero. When a new data item arrives for a zero length queue, it simply overwrites the
previous item without indicating an overflow. The NC_ST_READ_AVAIL state and
NC_ERR_OLD_DATA warning still behave as usual, but you can ignore them if you only want
the most recent data. You can use the NC_ATTR_READ_Q_LEN attribute to configure the read
queue length.

The host data type returned from ncRead is different for each NI-CAN object class. This type
normally includes data received from the network along with a timestamp of when that data
arrived.

For C, the timestamp that ncRead returns is an unsigned 64-bit integer compatible with the
Win32 FILETIME type. When data arrives from the network and is placed in the read queue,
NI-CAN obtains this timestamp from the absolute time attribute (NC_ATTR_ABS_TIME) of
the CAN Network Interface Object. This absolute time is kept in a Coordinated Universal
Time (UTC) format, the standard used for global timekeeping (times that are not specific to
local time zone considerations). UTC-based time is loosely defined as the current date and
time of day in Greenwich, England. Microsoft defines its UTC time (FILETIME) as a 64-bit
counter of 100 ns intervals that have elapsed since 12:00 a.m., January 1, 1601. Because the
timestamp returned by ncRead is compatible with FILETIME, you can pass it into the Win32
FileTimeToLocalFileTime function to convert it to your local time zone format, then pass

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-27 NI-CAN Programmer Reference Manual

the resulting local time to the Win32 FileTimeToSystemTime function to convert it to the
Win32 SYSTEMTIME type (a structure with fields for year, month, day, and so on). For more
information on Win32 time types and functions, refer to the Win32 Software Development
Kit (SDK) online help.

For LabVIEW, the timestamp that ncRead returns is compatible with the LabVIEW time
format. LabVIEW time is a double-precision floating-point number (DBL) representing the
number of seconds that have elapsed since 12:00 a.m., Friday, January 1, 1904, Coordinated
Universal Time (UTC). You can pass this timestamp into LabVIEW time functions such as
Seconds To Date/Time. You can also display the time in a numeric indicator of type DBL
by using Format & Precision from the front panel to change from Numeric to Time & Date
format (set Seconds Precision to 3 to display milliseconds). For more information, refer to
the LabVIEW Online Reference.

CAN Network Interface Object
The host data type you use with ncRead is NCTYPE_CAN_FRAME_TIMED. For
LabVIEW, each field of NCTYPE_CAN_FRAME_TIMED is returned in a terminal of
the NI-CAN Read CAN Network Interface Object function (ncReadNet.vi). For C,
NCTYPE_CAN_FRAME_TIMED is a structure. Table 2-4 describes the fields of
NCTYPE_CAN_FRAME_TIMED.

Table 2-4. NCTYPE_CAN_FRAME_TIMED Field Names

Field Name Data Type Description

Timestamp NCTYPE_ABS_TIME Holds value of absolute timer
(NC_ATTR_ABS_TIME) when frame was
received.

ArbitrationId NCTYPE_CAN_ARBID CAN arbitration ID received with frame. For
more information on how standard and
extended arbitration IDs are encoded, refer
to Chapter 1, NI-CAN Host Data Types.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-28 ni.com

When a CAN frame arrives from over the network, NI-CAN first checks it for handling by an
open CAN Object. If no CAN Object applies, NI-CAN filters the arbitration ID of the frame
using the appropriate comparator and mask. If the frame is acceptable, NI-CAN places it into
an available entry in the read queue of the CAN Network Interface Object.

CAN Object
The host data type you use with ncRead is NCTYPE_CAN_DATA_TIMED. For LabVIEW,
each field of NCTYPE_CAN_DATA_TIMED is returned in a terminal of the NI-CAN Read CAN
Object function (ncReadObj.vi). For C, NCTYPE_CAN_DATA_TIMED is a structure.
Table 2-5 describes the fields of NCTYPE_CAN_DATA_TIMED.

IsRemote NCTYPE_BOOL Indicates whether frame is CAN remote
frame (NC_TRUE) or CAN data frame
(NC_FALSE). It is always false for ncRead,
indicating a CAN data frame. The CAN
Network Interface Object cannot receive
incoming CAN remote frames.

For low-speed CAN, this field holds a
special value indicating low speed
communication errors. For more
information, refer to the description of the
NC_ATTR_LOG_COMM_ERRORS attribute in
the CAN Network Interface Object section of
Chapter 3, NI-CAN Objects.

DataLength NCTYPE_UINT8 Number of data bytes in frame.

Data Array of bytes
(NCTYPE_UINT8)

This array holds data bytes (8 maximum).

Table 2-4. NCTYPE_CAN_FRAME_TIMED Field Names (Continued)

Field Name Data Type Description

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-29 NI-CAN Programmer Reference Manual

Return Status
NC_SUCCESS Success (no warning or error).
NC_ERR_BAD_PARAM Invalid parameter.
NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.
NC_ERR_OLD_DATA Data returned from ncRead is the same as the data returned from

the previous call to ncRead.
NC_ERR_OVERFLOW Read queue overflow. This error code does not apply to ncRead

itself, but indicates an error in background communication. A
valid data value is still returned to you from ncRead, and all other
data received prior to the overflow remains in the read queue.

NC_ERR_TIMEOUT Watchdog timeout expired for a CAN Object. This error code does
not apply to ncRead itself, but indicates an error in background
communication.

NC_ERR_CAN_BUS_OFF Error or warning indicating CAN communication errors. This
error code does not apply to ncRead itself, but indicates an error
in background communication.

Examples
These examples assume the following declarations:
NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_CAN_FRAME_TIMEDrframe;

NCTYPE_CAN_DATA_TIMEDrdata;

1. Read from a CAN Network Interface Object.

status = ncRead(objh, sizeof(rframe), &rframe);

2. Read from a CAN Object.

status = ncRead(objh, sizeof(rdata), &rdata);

Table 2-5. NCTYPE_CAN_DATA_TIMED Field Names

Field Name Data Type Description

Timestamp NCTYPE_ABS_TIME Holds value of absolute timer
(NC_ATTR_ABS_TIME) when CAN data
frame was received.

Data Array of bytes
(NCTYPE_UINT8)

Data bytes for CAN Object. Available only
when CAN Object is configured to receive
data. Length of Data is preconfigured using
NC_ATTR_CAN_DATA_LENGTH attribute.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-30 ni.com

ncReadMult

Purpose
Read multiple data values from an object’s queue.

Format

LabVIEW

C
NCTYPE_STATUS ncReadMult(NCTYPE_OBJH ObjHandle,

NCTYPE_UINT32 DataSize,
NCTYPE_ANY_P DataPtr,
NCTYPE_UINT32_P ActualDataSize);

Input
ObjHandle Object handle.
DataSize Size of the data buffer in bytes (C only)
DataPtr For C, points to data buffer in which the data returned. For

LabVIEW, the data returned in object-specific output terminals.

Output
ActualDataSize Number of bytes actually dequeued

Description
This function returns multiple data points from the read queue of the object specified by
ObjHandle. When used with the Network Interface, ncReadMult is useful in analyzer
applications where data frames need to be acquired at a high speed and stored for analysis in
the future. For single frame and most recent data frame acquisition, you should use ncRead.

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-31 NI-CAN Programmer Reference Manual

For C, DataPtr points to the variable that holds the data. Its type is undefined so that you can
use the appropriate host data type. DataSize indicates the size of variable pointed to by
DataPtr, and is used to verify that the size you have available is compatible with the
configured read size for the object.

For LabVIEW, the data is returned to you using object-specific output terminals.

DataSize is the size of the buffer (array) that will hold the data. This buffer must be of the
appropriate host data type. The buffer size (in terms of host data type) should be less than or
equal to the Read Queue Length that you have setup for the particular object. Dataptr points
to the first element of the data buffer and can be of type void or a pointer to the host data type
being used (refer to nican.h for a list of host data types and their associated pointer types).
For more information on the host data type returned, refer to the ncRead function.

Because NI-CAN handles the read queue in the background, this function does not wait for
new data to arrive. To ensure that new data is available before calling ncReadMult, first wait
for the NC_ST_READ_AVAIL state. Refer to the ncRead function for more information on this
state.

This function does not return any old data for an empty queue or NC_ERR_OLD_DATA
warnings. If there is no new data, the function returns with an ActualDataSize of zero.

The description for NC_ERR_OVERFLOW, host data types, and return status is identical to that
of ncRead with the exception of NC_ERR_OLD_DATA, described above.

Refer to the ncRead function description for more details on the structures/clusters used with
the CAN Network Interface Object and timestamps.

Return Status
NC_SUCCESS Success (no warning or error)
NC_ERR_BAD_PARAM Invalid parameter
NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver
NC_ERR_OVERFLOW Read queue overflow. This error code does not apply to

ncReadMult itself, but indicates an error in background
communication. A valid data value is still returned to you from
ncReadMult, and all other data received prior to the overflow
remains in the read queue.

NC_ERR_TIMEOUT Watchdog timeout expired for a CAN Object. This error code does
not apply to ncReadMult itself, but indicates an error in
background communication.

NC_ERR_CAN_BUS_OFF Error or warning indicating CAN communication errors. This
error code does not apply to ncReadMult itself, but indicates an
error in background communication.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-32 ni.com

Examples
These examples assume the following declarations:
NCTYPE_STATUS Status;
NCTYPE_OBJH Rxhandle;

1. Read from Network Interface Object:
NCTYPE_CAN_FRAME_TIMED ReceiveBuf[140]; //buffer of 140 frames
NCTYPE_UINT32 ActualDataSize;
NCTYPE_CAN_FRAME_TIMED_P RecvPtr;
RecvPtr = ReceiveBuf;
Status = ncReadMult(RxHandle, sizeof(ReceiveBuf),RecvPtr,

&ActualDataSize);
.

.

ActualDataSize = ActualDataSize/sizeof(NC_TYPE_CAN_FRAME_TIMED);

2. Read from CAN Object:
NCTYPE_CAN_DATA_TIMED ReceiveBuf[140];//buffer of 140 frames
NCTYPE_CAN_DATA_TIMED Recv;
NCTYPE_UINT32 ActualDataSize;
NCTYPE_CAN_DATA_TIMED_P RecvPtr;
RecvPtr = ReceiveBuf;
Status = ncReadMult(RxHandle, sizeof(ReceiveBuf), RecvPtr,

&ActualDataSize);
.

.

ActualDataSize = ActualDataSize/sizeof(NCTYPE_CAN_DATA_TIMED);

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-33 NI-CAN Programmer Reference Manual

ncReset

Purpose
Reset the board

Format

LabVIEW

C
NCTYPE_STATUS _NCFUNC_ ncReset(NCTYPE_STRING IntfName, NCTYPE_UINT32

Param);

Input
IntfName Interface name (example: CAN0)
Param Reserved for future use (set to 0)

Description
This function completely resets the CAN interface and ensures that all handles for that
interface are closed.

If an NI-CAN application is terminated prior to closing all handles, the
NC_ERR_NOT_STOPPED or NC_ERR_ALREADY_OPEN error might occur when the application
is restarted. This often occurs in LabVIEW when the toolbar Stop button is used, or when a
wiring problem with ObjHandle exists.

By making this the first NI-CAN function called in your application (preceding all
ncConfig), you can avoid problems related to improper termination.

You can only use the ncReset function if you plan to run a single NI-CAN application. If you
run more than one NI-CAN application, each with ncReset, the second ncReset call will
close all handles for the first application.

You should only use the ncReset function as a temporary measure. After you update your
application so that it successfully closes NI-CAN handles on termination, it should no longer
be used.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-34 ni.com

ncSetAttribute

Purpose
Set the value of an object’s attribute.

Format

LabVIEW

C
NCTYPE_STATUS ncSetAttribute(NCTYPE_OBJH ObjHandle,

NCTYPE_ATTRID AttrId,
NCTYPE_UINT32 AttrSize,
NCTYPE_ANY_P AttrPtr)

Input
ObjHandle Object handle.
AttrId Identifier of the attribute to set.
AttrSize Size of the attribute in bytes (C only).
AttrPtr (AttrValue) New attribute value. For C, you provide the attribute value using

the pointer AttrPtr. For LabVIEW, you provide the attribute
value in AttrValue.

Description
ncSetAttribute sets the value of the attribute specified by AttrId in the object specified
by ObjHandle. ncSetAttribute can be used only for attributes with Set permissions, not
Get (ncGetAttribute only) or Config (ncConfig only).

For C, AttrPtr points to the variable that holds the attribute value. Its type is undefined so
that you can use the appropriate host data type for AttrId. AttrSize indicates the size of
variable pointed to by AttrPtr.

For LabVIEW, this function sets the value of an object’s attribute using a LabVIEW U32

(AttrValue), so a size is not needed.

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-35 NI-CAN Programmer Reference Manual

CAN Network Interface Object
For information on the attributes of the CAN Network Interface Object, refer to the CAN
Network Interface Object section of Chapter 3, NI-CAN Objects.

CAN Object
For information on the attributes of the CAN Object, refer to the CAN Object section of
Chapter 3, NI-CAN Objects.

Return Status
NC_SUCCESS Success (no error or warning).
NC_ERR_BAD_PARAM Invalid parameter. This error is returned when the attribute

specified by AttrId has Get or Config permissions.
NC_ERR_BAD_VALUE The value of the attribute is invalid for the specified AttrId.
NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

Example
This example assumes the following declarations:
NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_ABS_TIME abstime;

Set the absolute time to zero.

abstime.LowPart = 0;

abstime.HighPart = 0;

status = ncSetAttribute(objh, NC_ATTR_ABS_TIME,

sizeof(abstime), &abstime);

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-36 ni.com

ncWaitForState

Purpose
Wait for one or more states to occur in an object.

Format

LabVIEW

C
NCTYPE_STATUS ncWaitForState(NCTYPE_OBJH ObjHandle,

NCTYPE_STATE DesiredState,
NCTYPE_DURATION Timeout,
NCTYPE_STATE_P StatePtr)

Input
ObjHandle Object handle.
DesiredState States to wait for (bitmask).
Timeout Length of time to wait.

Output
StatePtr (State) Current state of object when desired states occur. For C, the state

is returned to you using the pointer StatePtr. For LabVIEW, the
state is returned to you in State.

Description
You use ncWaitforState to wait for one or more states to occur in the object specified by
ObjHandle.

This function waits up to Timeout for one of the bits set in DesiredState to become set in
the attribute NC_ATTR_STATE. You can use the special Timeout value
NC_DURATION_INFINITE (FFFFFFFF hex) to wait indefinitely.

When the states in DesiredState are detected, the function returns the current value of the
NC_ATTR_STATE attribute. If an error occurs, the state returned is zero.

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-37 NI-CAN Programmer Reference Manual

While waiting for the desired states, ncWaitForState suspends the current execution. For
C, other Win32 threads in your application can still execute. For LabVIEW, functions that are
not directly connected to ncWaitForState can execute.

If you want to allow other code in your application to execute while waiting for NI-CAN
states, refer to the ncCreateNotification (C only) and ncCreateOccurrence

(LabVIEW only) functions.

Return Status
NC_SUCCESS Success (no error or warning).
NC_ERR_BAD_PARAM Invalid parameter.
NC_ERR_TIMEOUT Timeout expired before any desired states occurred.
NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

Examples
These examples assume the following declarations:
NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_STATE state;

1. Wait no more than 10 seconds for data to arrive in the read queue.

status = ncWaitforState(objh, NC_ST_READ_AVAIL, 10000, &state);

2. Wait no more than 100 milliseconds for a previous ncWrite to succeed, or for a
background warning/error, such as bus off, to occur.

status = ncWaitforState(objh, (NC_ST_WRITE_SUCCESS | NC_ST_WARNING

| NC_ST_ERROR), 100, &state);

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-38 ni.com

ncWrite

Purpose
Write the data value of an object.

Format

LabVIEW

C
NCTYPE_STATUS ncWrite(NCTYPE_OBJH ObjHandle,

NCTYPE_UINT32 DataSize,
NCTYPE_ANY_P DataPtr)

Input
ObjHandle Object handle.
DataSize Size of the data in bytes.
DataPtr Data written to the object. For C, you provide the data using the

pointer DataPtr. For LabVIEW, you provide the data using
object-specific input terminals.

Description
ncWrite writes the data value of the object specified by ObjHandle.

For C, DataPtr points to the variable from which the data is written. Its type is undefined so
that you can use the appropriate host data type. DataSize indicates the size of variable
pointed to by DataPtr, and is used to verify that the size you provide is compatible with the
configured write size for the object.

For LabVIEW, you provide the data using object-specific input terminals.

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-39 NI-CAN Programmer Reference Manual

You use ncWrite to place data into the write queue of an object. Because NI-CAN handles
the write queue in the background, this function does not wait for data to be transmitted on
the network. To make sure that the data is transmitted successfully after calling ncWrite,
wait for the NC_ST_WRITE_SUCCESS state. The NC_ST_WRITE_SUCCESS state transitions
from false to true when the write queue is empty, and NI-CAN has successfully transmitted
the last data item onto the network. The NC_ST_WRITE_SUCCESS state remains true until you
write another data item into the write queue.

When you configure an object to transmit data onto the network periodically, it obtains data
from the object’s write queue each period. If the write queue is empty, NI-CAN transmits the
data of the previous period again. NI-CAN transmits this data repetitively until the next call
to ncWrite.

If an object’s write queue is full, a call to ncWrite returns the NC_ERR_OVERFLOW error
(along with qualifier NC_QUAL_OVFL_WRITE), and NI-CAN discards the data you provide.
One way to avoid this overflow error is to set the write queue length to zero. When ncWrite
is called for a zero length queue, the data item you provide with ncWrite simply overwrites
the previous data item without indicating an overflow. A zero length write queue is often
useful when an object is configured to transmit data onto the network periodically, and you
simply want to transmit the most recent data value each period. It is also useful when you plan
to always wait for NC_ST_WRITE_SUCCESS after every call to ncWrite. You can use the
NC_ATTR_WRITE_Q_LEN attribute to configure the write queue length.

The host data type you provide to ncWrite is different for each NI-CAN object class.

CAN Network Interface Object
The host data type you use with ncWrite is NCTYPE_CAN_FRAME. For LabVIEW, each field
of NCTYPE_CAN_FRAME is provided in a terminal of the NI-CAN Write CAN Network
Interface Object function (ncWriteNet.vi). For C, NCTYPE_CAN_FRAME is a structure.
Table 2-6 describes the fields of NCTYPE_CAN_FRAME.

Table 2-6. NCTYPE_CAN_FRAME Field Names

Field Name Data Type Description

ArbitrationId NCTYPE_CAN_ARBID CAN arbitration ID to transmit with frame.
For information on how standard and
extended arbitration IDs are encoded, refer
to Chapter 1, NI-CAN Host Data Types.

IsRemote NCTYPE_BOOL Indicates whether frame is CAN remote
frame (NC_TRUE) or CAN data frame
(NC_FALSE).

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual 2-40 ni.com

Sporadic, recoverable errors on the CAN network interface are handled automatically by the
protocol, and are not reported as errors from NI-CAN. As such, after ncWrite returns
successfully, NI-CAN eventually transmits the frame on the CAN network unless the
NC_ERR_CAN_BUS_OFF warning occurs.

CAN Object
The host data type you use with ncWrite is NCTYPE_CAN_DATA. For LabVIEW, each field
of NCTYPE_CAN_DATA is provided in a terminal of the NI-CAN Write CAN Object function
(ncWriteObj.vi). For C, NCTYPE_CAN_DATA is a structure.

For CAN Objects configured to transmit a CAN remote frame when you call ncWrite
(Receive Value with Call), you do not provide data to ncWrite. For C, you set DataSize to
zero. For LabVIEW, you leave the Data terminal of ncWriteObj.vi unconnected. For more
information on Receive Value with Call, refer to the description of the NC_ATTR_COMM_TYPE
attribute.

Table 2-7 describes the field of NCTYPE_CAN_DATA.

Return Status
NC_SUCCESS Success (no error or warning).
NC_ERR_BAD_PARAM Invalid parameter.
NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.
NC_ERR_OVERFLOW Write queue overflow. This error occurs when the write queue of

the object is full, and the data value you provided cannot be

DataLength NCTYPE_UINT8 When IsRemote is false, this field specifies
number of data bytes in frame. When
IsRemote is true, it specifies desired
number of data bytes.

Data Array of bytes
(NCTYPE_UINT8)

When IsRemote is false, this array holds
data bytes (8 maximum).

Table 2-7. NCTYPE_CAN_DATA Field Name

Field Name Data Type Description

Data Array of bytes
(NCTYPE_UINT8)

Data bytes for CAN Object. Available only
when CAN Object is configured to transmit
data. Length of Data is preconfigured using
NC_ATTR_CAN_DATA_LENGTH attribute.

Table 2-6. NCTYPE_CAN_FRAME Field Names (Continued)

Field Name Data Type Description

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-41 NI-CAN Programmer Reference Manual

queued for later transmission. The error can occur only if the write
queue length (NC_ATTR_WRITE_Q_LEN) is nonzero.

NC_ERR_TIMEOUT Watchdog timeout expired for a CAN Object. This error code does
not apply to ncWrite itself, but indicates an error in background
communication.

NC_ERR_CAN_BUS_OFF Error or warning indicating CAN communication errors. This
error code does not apply to ncWrite itself, but indicates an error
in background communication.

Examples
These examples assume the following declarations:
NCTYPE_STATUS status;
NCTYPE_OBJH objh;
NCTYPE_CAN_FRAME_TIMEDwframe;
NCTYPE_CAN_DATA_TIMEDwdata;

1. Write to a CAN Network Interface Object.

status = ncWrite(objh, sizeof(wframe), &wframe);

2. Write to a CAN Object.

status = ncWrite(objh, sizeof(wdata), &wdata);

© National Instruments Corporation 3-1 NI-CAN Programmer Reference Manual

3
NI-CAN Objects

This chapter lists the syntax of the ObjName for each object class, specifies what the object
encapsulates, and gives an overview of the major features and uses of each object.

For information on how each NI-CAN function is used with the following object classes, refer
to Chapter 2, NI-CAN Functions.

Object Names
The objects in this chapter are listed in alphabetical order. For each object class, the syntax of
its ObjName is discussed.

Encapsulates
Each object description includes a brief summary of what the object encapsulates.

Description
The description section gives an overview of the major features and uses of the object.

Attributes
The attributes section lists and describes the attributes for each object. The attributes are listed
in alphabetical order.

For each attribute, the description lists its host data type, its attribute ID, and its permissions.
Attribute permissions consist of one of the following:
Get You can get the attribute at any time, but never set it.
Set You can get or set the attribute at any time.
Config You can get the attribute at any time, but you can set it only by

using the ncConfig function. These attributes are called
configuration attributes. NI-CAN obtains the initial value of
configuration attributes from the NI-CAN Configuration utility,
and you can override them only by using ncConfig, not
ncSetAttribute.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual 3-2 ni.com

CAN Network Interface Object

Object Name
CANx

The letters CAN indicate the class of the CAN Network Interface Object, and x is a decimal
number starting at zero that indicates which CAN network interface is being referenced
(CAN0, CAN1, and so on). Use the NI-CAN Configuration utility to associate instance numbers
with physical network interface ports.

Encapsulates
CAN network interface.

Description
The CAN Network Interface Object encapsulates a physical interface to a CAN network,
usually a CAN port on an AT, PCI, or PCMCIA interface.

The communication facilities of the CAN Network Interface Object basically consist of a read
queue and a write queue. You use the ncRead function to read CAN frames from the read
queue in the order they arrive. When an incoming frame arrives, the NC_ST_READ_AVAIL
state sets, to notify you that one or more CAN frames are in the read queue. You use the
ncWrite function to write CAN frames to the write queue. NI-CAN transmits CAN frames
from the write queue in the order written. When all CAN frames in the write queue are
transmitted successfully, the NC_ST_WRITE_SUCCESS state sets.

You can use the CAN Network Interface Object for communication along with CAN Objects.
When one or more CAN Objects are open, the CAN Network Interface Object cannot receive
frames that would normally be handled by the CAN Objects. For example, if you open the
CAN Object named CAN0::STD5, then the CAN Network Interface Object cannot receive
frames with standard arbitration ID 5.

If you choose not to configure the CAN Network Interface Object to start automatically
(NC_ATTR_START_ON_OPEN attribute is false), it opens in the stopped state (not
communicating). To start network communication for the CAN Network Interface Object and
all higher level CAN Objects, call ncAction with NC_OP_START. You might want to do this
when you have an application that tests an installed CAN network. In this sort of environment,
you would load test patterns (lists of data values) into various write queues, then use
NC_OP_START to start the test sequence.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-3 NI-CAN Programmer Reference Manual

Error Active, Error Passive, and Bus Off States
The CAN communication controller used by NI-CAN network interfaces is the Intel 82527.
Although this chip provides no direct means of detecting the error passive state, it can detect
when one of its error counters increments above 96. When this occurs, NI-CAN sets the
NC_ST_WARNING state in the NC_ATTR_STATE attribute of the CAN Network Interface
Object and all of its higher level CAN Objects. The background status attribute
(NC_ATTR_STATUS) is set with the status code NC_ERR_CAN_BUS_OFF and a warning
severity.

When the transmit error counter of the Intel 82527 increments above 255, the network
interface transfers into the bus off state as dictated by the CAN protocol. The network
interface stops communication so that you can correct the defect in the network, such as
a malfunctioning cable or device. When bus off occurs, the NC_ST_ERROR and
NC_ST_STOPPED states are set in the NC_ATTR_STATE attribute of the CAN Network
Interface Object and all of its higher level CAN Objects. The background status attribute
(NC_ATTR_STATUS) is set with the status code NC_ERR_CAN_BUS_OFF and an error severity.

Whether the severity of NC_ERR_CAN_BUS_OFF is a warning or error, the status qualifier is
set to indicate the most recently detected communications error. This qualifier can have the
value NC_QUAL_CAN_STUFF (more than five equal bits), NC_QUAL_CAN_FORM (wrong frame
format), NC_QUAL_CAN_ACK (frame not acknowledged), NC_QUAL_CAN_BIT1 (transmitted
one but detected zero), NC_QUAL_CAN_BIT0, or NC_QUAL_CAN_CRC (wrong CRC
checksum). Refer to the CAN protocol specification for a complete description of these
communication errors.

If no CAN devices are connected to the network interface port, and you attempt to transmit a
frame, the NC_ERR_CAN_BUS_OFF status occurs with a warning severity. This warning occurs
because the missing acknowledgment bit increments the transmit error counter until the
network interface reaches the error passive state, but bus off state is never reached.

Because the error counters in the CAN chip reflect the status of the CAN network, and not
necessarily your CAN application, a given NC_ERR_CAN_BUS_OFF warning will often
remain from one run of your application to the next. If you want to clear the CAN chip’s error
counters (and the NC_ERR_CAN_BUS_OFF warning) completely when your application starts,
use ncAction of NC_OP_RESET to reset the CAN chip, then use ncAction of
NC_OP_START to resume communication.

For more information about low-speed communication error handling, refer to the description
of the NC_ATTR_LOG_COMM_ERRS attribute in the CAN Network Interface Object section of
this chapter.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual 3-4 ni.com

Attributes

NC_ATTR_ABS_TIME (Absolute Time)

NC_ATTR_BAUD_RATE (Baud Rate)

Attribute ID NC_ATTR_ABS_TIME

Hex Encoding 80000008

Data Type NC_ATTR_ABS_TIME

Permissions Set

Description Absolute time of the network interface. The NI-CAN driver uses this
attribute for timestamps returned by ncRead. When the NI-CAN
driver first initializes (for example, when the host computer is
powered on), it is set to the system time of the host computer, and thus
keeps the absolute time since that point. You can set this attribute to
zero to keep absolute time from a given point, but then the ncRead
timestamp is no longer compatible with Win32 FILETIME or
LabVIEW time. For more information, refer to the description of the
ncRead function in Chapter 2, NI-CAN Functions.

This attribute applies to all objects of the CAN network interface
hardware product. For example, if an interface board contains two
network interface ports, this attribute applies to both CAN Network
Interface Objects.

Attribute ID NC_ATTR_BAUD_RATE

Hex Encoding 80000007

Data Type NCTYPE_BAUD_RATE

Permissions Config

Description Baud rate of the network interface. NI-CAN calculates values for
various CAN timing parameters and programs them based on the baud
rate. All common baud rates are supported, including 10 kb/s,
100 kb/s, 125 kb/s, 250 kb/s, 500 kb/s, and 1000 kb/s.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-5 NI-CAN Programmer Reference Manual

NC_ATTR_CAN_COMP_STD (Standard Comparator)

Attribute ID NC_ATTR_CAN_COMP_STD

Hex Encoding 80010001

Data Type NCTYPE_CAN_ARBID

Permissions Config

Description CAN arbitration ID for the standard frame comparator. This
comparator filters all incoming standard (11-bit) CAN frames placed
into the read queue. The NC_FL_CAN_ARBID_XTD bit must be clear
for any value written to this attribute. For more information, refer to
the description of NCTYPE_CAN_ARBID in Chapter 1, NI-CAN Host
Data Types.

If you intend to use CAN Objects as the sole means of receiving
standard CAN frames from the network, you should disable all
standard frame reception in the CAN Network Interface Object by
setting this attribute to NC_CAN_ARBID_NONE (CFFFFFFF hex).
With this setting, the network interface is best able to filter out all
incoming standard CAN frames except those handled by the CAN
Objects.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual 3-6 ni.com

NC_ATTR_CAN_COMP_XTD (Extended Comparator)

NC_ATTR_CAN_MASK_STD (Standard Mask)

Attribute ID NC_ATTR_CAN_COMP_XTD

Hex Encoding 80010003

Data Type NCTYPE_CAN_ARBID

Permissions Config

Description CAN arbitration ID to the extended frame comparator. This
comparator filters all incoming extended (29-bit) CAN frames placed
into the read queue. The NC_FL_CAN_ARBID_XTD bit must be set for
any value written to this attribute. For more information, refer to the
description of NCTYPE_CAN_ARBID in Chapter 1, NI-CAN Host Data
Types.

If you intend to use CAN Objects as the sole means of receiving
extended CAN frames from the network, you should disable all
extended frame reception in the CAN Network Interface Object by
setting this attribute to NC_CAN_ARBID_NONE (CFFFFFFF hex).
With this setting, the network interface is best able to filter out all
incoming extended CAN frames except those handled by the CAN
Objects.

Attribute ID NC_ATTR_CAN_MASK_STD

Hex Encoding 80010002

Data Type NCTYPE_UINT32

Permissions Config

Description Bitmask used in conjunction with NC_ATTR_CAN_COMP_STD for
filtration of incoming standard CAN frames. For each bit set in the
mask, NI-CAN checks the corresponding bit in the standard frame
comparator for a match. Bits in the mask that are clear are treated
as don’t-cares. For example, hex 000007FF means to compare all
11 bits of incoming standard CAN frames. If the standard frame
comparator is NC_CAN_ARBID_NONE, NI-CAN ignores this mask,
because all standard frame reception is disabled in the CAN Network
Interface Object.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-7 NI-CAN Programmer Reference Manual

NC_ATTR_CAN_MASK_XTD (Extended Mask)

NC_ATTR_PROTOCOL (Protocol)

NC_ATTR_PROTOCOL_VERSION (Protocol Version)

Attribute ID NC_ATTR_CAN_MASK_XTD

Hex Encoding 80010004

Data Type NCTYPE_UINT32

Permissions Config

Description Bitmask used in conjunction with NC_ATTR_CAN_COMP_XTD for
filtration of incoming extended CAN frames. For each bit set in the
mask, NI-CAN checks the corresponding bit in the extended frame
comparator for a match. Bits in the mask that are clear are treated
as don’t-cares. For example, hex 1FFFFFFF means to compare all
29 bits of incoming extended CAN frames. If the extended frame
comparator is NC_CAN_ARBID_NONE, NI-CAN ignores this mask.

Attribute ID NC_ATTR_PROTOCOL

Hex Encoding 80000001

Data Type NCTYPE_PROTOCOL

Permissions Get

Description Protocol implemented by the CAN Network Interface Object.
The value is always NC_PROTOCOL_CAN (00000001 hex).

Attribute ID NC_ATTR_PROTOCOL_VERSION

Hex Encoding 80000002

Data Type NCTYPE_VERSION

Permissions Get

Description Version that indicates the level of conformance to the protocol
specification. The value is always hex 02000200 (major version 2,
minor version 0, subminor B), to indicate conformity with CAN 2.0
Parts A and B. The CAN implementation under NI-CAN also
complies with ISO 11898.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual 3-8 ni.com

NC_ATTR_READ_PENDING (Read Entries Pending)

NC_ATTR_READ_Q_LEN (Read Queue Length)

NC_ATTR_SOFTWARE_VERSION (Software Version)

Attribute ID NC_ATTR_READ_PENDING

Hex Encoding 80000011

Data Type NCTYPE_UINT32

Permissions Get

Description Indicates the number of pending entries in the read queue. If
NC_ATTR_READ_PENDING is zero, the NC_ST_READ_AVAIL state
is clear.

Attribute ID NC_ATTR_READ_Q_LEN

Hex Encoding 80000013

Data Type NCTYPE_UINT32

Permissions Config

Description Length (maximum number of entries) for the read queue. For more
information, refer to the description of the ncRead function in
Chapter 2, NI-CAN Functions.

Attribute ID NC_ATTR_SOFTWARE_VERSION

Hex Encoding 80000003

Data Type NCTYPE_VERSION

Permissions Get

Description Version of the NI-CAN driver that implements this object as well
as all objects above it in the object hierarchy. This is the National
Instruments version number, not the version of the protocol.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-9 NI-CAN Programmer Reference Manual

NC_ATTR_START_ON_OPEN (Start On Open)

NC_ATTR_STATE (Object State)

Attribute ID NC_ATTR_START_ON_OPEN

Hex Encoding 80000006

Data Type NCTYPE_BOOL

Permissions Config

Description Indicates whether communication starts for the CAN Network
Interface Object (and all CAN Objects above it in the hierarchy)
immediately after you open an object with ncOpenObject. You
must always set this attribute within the NI-CAN Configuration
utility. It is normally set to true after you use the utility to specify
needed configuration attributes such as baud rate. When this attribute
is set to true, NI-CAN starts communication transparently. When this
attribute is set to false, you must use ncAction to issue
NC_OP_START on the CAN Network Interface Object to begin
network communication.

Attribute ID NC_ATTR_STATE

Hex Encoding 80000009

Data Type NCTYPE_STATE

Permissions Get

Description Current state of the CAN network interface. For more information,
refer to Appendix A, NI-CAN Object States.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual 3-10 ni.com

NC_ATTR_STATUS (Object Status)

NC_ATTR_WRITE_PENDING (Write Entries Pending)

NC_ATTR_WRITE_Q_LEN (Write Queue Length)

Attribute ID NC_ATTR_STATUS

Hex Encoding 8000000A

Data Type NCTYPE_STATUS

Permissions Get

Description Background status of the CAN network interface. Unless the
NC_ST_WARNING or NC_ST_ERROR states are set in
NC_ATTR_STATE, this attribute always returns NC_SUCCESS.
When you read an error or warning from this attribute, NI-CAN clears
the appropriate state and sets the background status back to
NC_SUCCESS. Sporadic, recoverable errors on the CAN network
interface are handled automatically by the protocol, and are not
reported as errors from NI-CAN. If a background error occurs, you
can read it from this attribute, or obtain it from the next call to ncRead
or ncWrite.

Attribute ID NC_ATTR_WRITE_PENDING

Hex Encoding 80000012

Data Type NCTYPE_UINT32

Permissions Get

Description Indicates the number of pending entries in the write queue. If
NC_ST_WRITE_PENDING is zero, the NC_ST_WRITE_SUCCESS
state is set (after NI-CAN successfully transmits the final frame).

Attribute ID NC_ATTR_WRITE_Q_LEN

Hex Encoding 80000014

Data Type NCTYPE_UINT32

Permissions Config

Description Length (maximum number of entries) for the write queue. For more
information, refer to the description of the ncWrite function in
Chapter 2, NI-CAN Functions.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-11 NI-CAN Programmer Reference Manual

NC_ATTR_RX_Q_LEN (Rx Queue Length)

Attribute ID NC_ATTR_RX_Q_LEN

Hex Encoding A0000004

Data Type NCTYPE_UINT32

Permissions Config

Description Sets the length of the onboard receive queue. This queue is a
transitionary queue between the CAN Controller and the actual read
queue of the CAN Network Interface and/or CAN Object. The default
length of this queue is 50.

In certain high-traffic situations, you might receive an error status
0x80030008. This is an NC_ERR_OVERFLOW error that uses the
following qualifier:
#define NC_QUAL_OVFL_RX_G 0X0030000

If you see this receive queue overflow error, increase the length to the
maximum number of frames that you would expect to receive in a
burst (back-to-back).

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual 3-12 ni.com

NC_ATTR_LOG_COMM_ERRS (Low-Speed CAN)

Attribute ID NC_ATTR_LOG_COMM_ERRS

Hex Encoding 8001000A

Data Type NCTYPE_BOOL

Permissions Config

Description This attribute only applies to low-speed CAN interfaces.

If this CAN Network Interface attribute is set to NC_TRUE (by adding
to the ncConfig list), CAN communication errors are logged to the
interface read queue, and are not reported in NI-CAN status. When
looking at a frame read using ncRead, a CAN communication error is
detected by checking from the following special value in the
IsRemote field of the NCTYPE_CAN_FRAME_TIMED structure:
#define NC_FRMTYPE_COMM_ERR 2

When IsRemote has this value, the ArbitrationId field holds a
status value similar to the return value from an NI-CAN function. The
TimeStamp field indicates the time when the error occurred (or
cleared). This ArbitrationId field will consist of one of the
following values:

0x4000000B-0x4006000BBus off warning occurred (error passive)
0x8000000B-0x8006000BBus off error occurred (bus off)
0x0000000B Bus off warning/error has cleared
0x8000000C Low-speed transceiver error detected
0x0000000C Low-speed transceiver error cleared

Note: The default value for this attribute is NC_FALSE.

For LabVIEW, this attribute is configured using the Network Interface
Config Cluster-LS and the ncConfigCANNetLS.vi.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-13 NI-CAN Programmer Reference Manual

NC_ATTR_READ_MULT_SIZE (ReadMult Size for Notification)

NC_ATTR_RTSI_MODE (RTSI Mode)

Attribute Id NC_ATTR_READ_MULT_SIZE

Hex Encoding 0x8001000B

Data Type NCTYPE_UINT32

Permissions Config, Set, Get

Description Sets the size (in number of frames) that NI-CAN will use to notify the
user when specified amount of frames are available in the Read
Queue. Once the application receives the notification, the user can call
ncReadMult to read the desired number of frames. By using this
functionality, a user does not need to poll the queue constantly to read
frames.

Note that the ncCreateNotification (or ncCreateOccurance)
function must use a desired state of NC_ST_READ_MULT (hex
encoding 0x00000008).

In LabVIEW, you can set the attribute by using the ncSetAttribute
function after calling ncConfig and ncOpen for the object. The user
then needs to call ncCreateOccurance, as shown in this manual,
with the aforementioned state (0x08) as the Desired State.

In C, you can do this by either adding it to the Network Interface
attribute configuration or calling ncSetAttribute function. The
function call to ncCreateNotification must have the Desired
State of NC_ST_READ_MULT.

Attribute Id NC_ATTR_RTSI_MODE (RTSI Mode)

Hex Encoding 0x80000017

Data Type NCTYPE_UINT32

Permissions Config, Set

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual 3-14 ni.com

Description This attribute defines whether the user needs to configure the CAN
object as an RTSI driver or the DAQ board as the RTSI driver. The
following values can be used:

Attribute values:

In C In LabVIEW RTSI Config Cluster

NC_RTSI_NONE Disable RTSI

NC_RTSI_TX_ON_IN On RTSI Input—Transmit CAN Frame

NC_RTSI_TIME_ON_IN On RTSI Input—Timestamp RTSI event

NC_RTSI_OUT_ON_RX RTSI Output on Receiving CAN Frame

NC_RTSI_OUT_ON_TX RTSI Output on Transmitting CAN Frame

NC_RTSI_OUT_ACTION_ONLYRTSI Output on ncAction call

Each mode is explained in detail below.

NC_RTSI_TX_ON_IN (On RTSI Input-Transmit CAN Frame):

In this mode, NI-CAN will transmit the most recent frame on an
incoming RTSI trigger on the RTSI line configured via
NC_ATTR_RTSI_SIGNAL. To begin transmission, a frame must be
written to the write queue of the object (by calling ncWrite) and an
RTSI signal applied to the configured RTSI line. NI-CAN will
retransmit the last frame until a new frame is enqueued.

NC_RTSI_TIME_ON_IN (On RTSI Input—Timestamp RTSI
event):

In this mode, NI-CAN will timestamp an incoming RTSI trigger on
the RTSI line configured via NC_ATTR_RTSI_SIGNAL and enqueue
in the object’s read queue a frame containing special entries in the
following fields (as noted):

Timestamp: Time when RTSI event occurred

Arbitration Id: 0x40000001 (NC_FL_CAN_ARBID_INFO |

NC_ARBID_INFO_RTSI_INPUT)

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-15 NI-CAN Programmer Reference Manual

Description
(continued)

Where in nican.h:

#define NC_FL_CAN_ARBID_INFO 0x40000000

#define NC_ARBID_INFO_RTSI_INPUT 0x00000001

IsRemote: Unchanged

DataLength: RTSI line number that produces the event

Data[8]: Unchanged

NC_RTSI_OUT_ON_RX (RTSI Output on Receiving CAN Frame):

In this mode, NI-CAN will output an RTSI trigger on the line
configured via NC_ATTR_RTSI_SIGNAL (RTSI Line Number)
whenever a frame is enqueued in the read queue of that object.

NC_RTSI_OUT_ON_TX (RTSI Output on Transmitting CAN
Frame):

In this mode, NI-CAN will output an RTSI trigger on the line
configured via NC_ATTR_RTSI_SIGNAL (RTSI Line Number)
whenever a frame is successfully transmitted.

NC_RTSI_OUT_ACTION_ONLY (RTSI Output on ncAction call):

In this mode, NI-CAN will output an RTSI trigger on the line
configured via NC_ATTR_RTSI_SIGNAL whenever the user calls the
ncAction function. With this function, a user can set/toggle an RTSI
line high or low.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual 3-16 ni.com

NC_ATTR_RTSI_SIGNAL (RTSI Line Number)

NC_ATTR_RTSI_SIG_BEHAV (RTSI Behavior)

Attribute Id NC_ATTR_RTSI_SIGNAL (RTSI Line Number)

Hex Encoding 0x80000018

Data Type NCTYPE_UINT32

Permissions Config, Set, Get

Description This attribute defines the RTSI B signal to be associated with the CAN
object.

Attribute values: 0 to 7 (for RTSI B signal lines)

Note: In the hardware, four RTSI lines are for input and four lines are
for output. Hence, four CAN objects can configure RTSI lines as input
and four can configure RTSI lines as output. An error 0x8000000D
(#define NC_ERR_RSRC_LIMITS 0x0000000D) will be reported
when these limits are exceeded.

Note: For low-speed and dual-speed boards, two lines are available as
input and three (3) lines are available as output. The unavailable lines
are used for low-speed transceiver fault reporting.

There is no limitation on which lines can be used as input or output.

Attribute Id NC_ATTR_RTSI_SIG_BEHAV (RTSI Behavior)

Hex Encoding 0x80000019

Data Type NCTYPE_UINT32

Permissions Config, Set, Get

Description This attribute is used when a CAN object is used to output RTSI
signals and defines whether the RTSI line is pulsed or toggled.

Attribute values:

NC_RTSISIG_PULSE (Output RTSI Pulse): This pulses the RTSI line
with a 100 µs pulse.

NC_RTSISIG_TOGGLE (Toggle RTSI Line): This toggles the RTSI
line. If the previous state was high, it will be toggled low, and vice
versa.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-17 NI-CAN Programmer Reference Manual

NC_ATTR_RTSI_SKIP (RTSI Skip)

CAN Object

Object Name
CANx::STDArbitration ID

CANx::XTDArbitration ID

CANx is the name of a CAN Network Interface Object such as CAN0. The letters STD and XTD
indicate the class of the CAN Object, specifying whether it uses a standard (11-bit) arbitration
ID or an extended (29-bit) arbitration ID. You normally specify the actual Arbitration ID
of the CAN Object as a decimal number, but you can use hexadecimal notation by including
a “0x” at the beginning of the hexadecimal notation.

Encapsulates
CAN arbitration ID and its associated data.

Description
When a network frame is transmitted on a CAN-based network, it always begins with
the arbitration ID. This arbitration ID is primarily used for collision resolution when more
than one frame is transmitted simultaneously, but often is also used as a simple mechanism to
identify data. The CAN arbitration ID, along with its associated data, is referred to as a CAN
Object.

The NI-CAN implementation of CAN provides high-level access to CAN Objects on an
individual basis. You can configure each CAN Object for different forms of communication
(such as periodic polling, receiving unsolicited CAN data frames, and so on). After you
configure a CAN Object and open it for communication, use the ncRead and ncWrite

Attribute Id NC_ATTR_RTSI_SKIP (RTSI Skip)

Hex Encoding 0x80000021

Data Type NCTYPE_UINT32

Permissions Config, Set, Get

Description This attribute defines the number of RTSI events to skip before
logging them to the read queue for that object. This attribute is used
with NC_ATTR_RTSI_MODE and with an attribute value of
NC_RTSI_TIME_ON_IN.

Attribute values: Any user number.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual 3-18 ni.com

functions to access the data of the CAN Object. The NI-CAN driver performs all other details
regarding the object.

Attributes

NC_ATTR_CAN_DATA_LENGTH (Data Length)

NC_ATTR_CAN_TX_RESPONSE (Transmit by Response)

Attribute ID NC_ATTR_CAN_DATA_LENGTH

Hex Encoding 80010007

Data Type NCTYPE_UINT32

Permissions Config

Description NC_ATTR_CAN_DATA_LENGTH indicates the number of bytes of data
contained in CAN data frames for the CAN Object. This number is
also placed into the Data Length Code (DLC) field of transmitted
CAN data frames or CAN remote frames (although CAN remote
frames do not contain actual data bytes).

Attribute ID NC_ATTR_CAN_TX_RESPONSE

Hex Encoding 80010006

Data Type NCTYPE_BOOL

Permissions Config

Description The NC_ATTR_CAN_TX_RESPONSE attribute applies only to CAN
Object configurations in which the Communication Type
(NC_ATTR_COMM_TYPE) is set to Transmit Data by Call, Transmit
Data Periodically, or Transmit Periodic Waveform. For those
configurations, NC_ATTR_CAN_TX_RESPONSE specifies whether the
CAN Object should automatically respond with the previously
transmitted CAN data frame when it detects an incoming CAN remote
frame. When set to NC_FALSE, the CAN Object transmits CAN data
frames only as configured, and ignores all incoming CAN remote
frames for its arbitration ID. When set to NC_TRUE, the CAN Object
responds to incoming CAN remote frames. CAN data frames
transmitted due to incoming CAN remote frames are independent of
any CAN data frames transmitted as a result of configured behavior.

If you know that a given CAN Object will not receive CAN remote
frames, you should set this attribute to NC_FALSE so that NI-CAN can
ignore such frames.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-19 NI-CAN Programmer Reference Manual

NC_ATTR_COMM_TYPE (Communication Type)

NC_ATTR_PERIOD (Period)

Attribute ID NC_ATTR_COMM_TYPE

Hex Encoding 80000016

Data Type NCTYPE_UINT32

Permissions Config

Description The NC_ATTR_COMM_TYPE (Communication Type) attribute
configures the fundamental behavior of the CAN Object. The
values for Communication Type are described in the Values for
Communication Type section, later in this chapter. Values that Receive
are always used to receive CAN data frames (and possibly transmit
CAN remote frames). Values that Transmit are always used to
transmit CAN data frames (and possibly receive CAN remote frames).

Attribute ID NC_ATTR_PERIOD

Hex Encoding 8000000F

Data Type NCTYPE_DURATION

Permissions Config

Description When you set the Communication Type (NC_ATTR_COMM_TYPE) to
Transmit Data Periodically, Transmit Periodic Waveform, or Receive
Periodically Using Remote, this attribute specifies the time in
milliseconds between subsequent transmissions.

When you set the Communication Type to Receive Unsolicited or
Transmit by Response Only, this attribute specifies a watchdog
timeout. A watchdog timeout of zero disables the watchdog timer.

When you set the Communication Type to Transmit Data by Call or
Receive Data By Call Using Remote, this attribute specifies the
minimum interval between subsequent transmissions. A minimum
interval of zero disables the minimum interval timer.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual 3-20 ni.com

NC_ATTR_READ_PENDING (Read Entries Pending)

NC_ATTR_READ_Q_LEN (Read Queue Length)

Attribute ID NC_ATTR_READ_PENDING

Hex Encoding 80000011

Data Type NCTYPE_UINT32

Permissions Get

Description Indicates the number of pending entries in the read queue.
If NC_ATTR_READ_PENDING is zero, the NC_ST_READ_AVAIL
state is clear.

Attribute ID NC_ATTR_READ_Q_LEN

Hex Encoding 80000013

Data Type NCTYPE_UINT32

Permissions Config

Description Length (maximum number of entries) for the read queue. For more
information, refer to the description of the ncRead function in
Chapter 2, NI-CAN Functions.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-21 NI-CAN Programmer Reference Manual

NC_ATTR_READ_MULT_SIZE

NC_ATTR_RTSI_MODE (RTSI Mode)

Attribute Id NC_ATTR_READ_MULT_SIZE

Hex Encoding 0x8001000B

Data Type NCTYPE_UINT32

Permissions Config, Set, Get

Description Sets the size (in number of frames) that NI-CAN will use to notify the
user when specified amount of frames are available in the Read
Queue. Once the application receives the notification, the user can call
ncReadMult to read the desired number of frames. By using this
functionality, a user does not need to poll the queue constantly to read
frames.

Note that the ncCreateNotification (or ncCreateOccurence)
function must use a desired state of NC_ST_READ_MULT (hex
encoding 0x00000008).

In LabVIEW, the attribute can be set by using the ncSetAttribute
function after calling ncConfig and ncOpen for the object. The user
then needs to call ncCreateOccurence, as shown in this manual,
with the aforementioned state (0x08) as the Desired State.

In C, you can do this by either adding it to the Network Interface
attribute configuration or calling the ncSetAttribute function. The
function call to ncCreateNotification must have the Desired
State of NC_ST_READ_MULT.

Attribute Id NC_ATTR_RTSI_MODE

Hex Encoding 0x80000017

Data Type NCTYPE_UINT32

Permissions Config, Set, Get

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual 3-22 ni.com

Description This attribute defines whether the user needs to configure the CAN
object as an RTSI driver or the DAQ board as the RTSI driver. The
following values can be used:

Attribute values:

In C In LabVIEW RTSI Config Cluster

NC_RTSI_NONE Disable RTSI

NC_RTSI_TX_ON_IN On RTSI Input—Transmit CAN Frame

NC_RTSI_TIME_ON_INOn RTSI Input—Timestamp RTSI event

NC_RTSI_OUT_ON_RX RTSI Output on Receiving CAN Frame

NC_RTSI_OUT_ON_TX RTSI Output on Transmitting CAN Frame

NC_RTSI_OUT_ACTION_ONLYRTSI Output on ncAction call

Each of the mode is explained in detail below.

NC_RTSI_TX_ON_IN (On RTSI Input-Transmit CAN Frame):

In this mode, NI-CAN will transmit the most recent frame on an
incoming RTSI trigger on the RTSI line configured via
NC_ATTR_RTSI_SIGNAL. The CAN Object can be configured as:

• NC_CAN_COMM_TX_BY_CALL (transmit frame by calling
ncWrite)

• NC_CAN_COMM_TX_PERIODIC (periodic transmission)

• NC_CAN_COMM_TX_WAVEFORM (waveform transmit)

In all three configurations, a CAN frame is transmitted on every
incoming RTSI trigger. The period is ignored (if nonzero).
(Note: for transmitting waveform, follow the instructions in the CAN
Object section.)

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-23 NI-CAN Programmer Reference Manual

Description
(continued)

For an object configured with NC_CAN_COMM_TX_BY_CALL,
transmission is begun by writing a frame containing the write queue
of the object (by calling ncWrite) and an RTSI signal applied to the
configured RTSI line. NI-CAN will retransmit the last frame until a
new frame is enqueued.

NC_RTSI_TIME_ON_IN (On RTSI Input—Timestamp RTSI
event):

In this mode, NI-CAN will timestamp an incoming RTSI trigger on
the RTSI line configured via NC_ATTR_RTSI_SIGNAL and enqueue
(in the object’s read queue) a frame containing special entries in the
following fields (as noted):

Timestamp: Time when RTSI event occurred.

Data[8]: User-defined frame (first 4 bytes) defined by
NC_ATTR_RTSI_FRAME. See description of the
NC_ATTR_RTSI_FRAME attribute for more details.

NC_RTSI_OUT_ON_RX (RTSI Output on Receiving CAN Frame):

In this mode, NI-CAN will output an RTSI trigger on the line
configured via NC_ATTR_RTSI_SIGNAL (RTSI Line Number)
whenever a frame is enqueued in that object’s read queue. This RTSI
configuration can be used when the Object is configured as:

NC_CAN_COMM_RX_UNSOL (Receive Unsolicited)

NC_RTSI_OUT_ON_TX (RTSI Output on Transmitting CAN
Frame):

In this mode, NI-CAN will output an RTSI trigger on the line
configured via NC_ATTR_RTSI_SIGNAL (RTSI Line Number)
whenever a frame is successfully transmitted. You can use this RTSI
configuration when the object is configured as:

• NC_CAN_COMM_TX_BY_CALL (Transmit Data by call)

• NC_CAN_COMM_TX_PERIODIC (Transmit Data Periodically)

• NC_CAN_COMM_TX_WAVEFORM (Transmit Periodic Waveform)

NC_RTSI_OUT_ACTION_ONLY (RTSI Output on ncAction call):

In this mode, NI-CAN will output an RTSI trigger on the line
configured via NC_ATTR_RTSI_SIGNAL whenever the user calls the
ncAction function. With this function, a user can set/toggle an RTSI
line high or low.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual 3-24 ni.com

NC_ATTR_RTSI_SIGNAL (RTSI Line Number)

NC_ATTR_RTSI_SIG_BEHAV (RTSI Behavior)

Attribute Id NC_ATTR_RTSI_SIGNAL (RTSI Line Number)

Hex Encoding 0x80000018

Data Type NCTYPE_UINT32

Permissions Config, Set, Get

Description This attribute defines the RTSI B signal to be associated with the CAN
object.

Attribute values: 0 to 7 (for RTSI B signal lines).

Note: In the hardware, four RTSI lines are for input and four lines are
for output. Hence, four CAN objects can configure RTSI lines for
input and four CAN objects can configure RTSI lines for output.
An error 0x8000000D (#define NC_ERR_RSRC_LIMITS
0x0000000D) will be reported when these limits are exceeded.

Note: For low-speed and dual-speed boards, two lines are available as
inputs and three (3) lines are available as outputs. The unavailable
lines are used for low-speed transceiver fault reporting.

There is no limitation on which lines can be used as input or output.

Attribute Id NC_ATTR_RTSI_SIG_BEHAV (RTSI Behavior)

Hex Encoding 0x80000019

Data Type NCTYPE_UINT32

Permissions Config, Set, Get

Description This attribute is to be used when a CAN object is used to output RTSI
signals and defines if the RTSI line is to be pulsed or toggled.

Attribute values:

NC_RTSISIG_PULSE (Output RTSI Pulse): This pulses the RTSI line
with a 100 µs pulse.

NC_RTSISIG_TOGGLE (Toggle RTSI Line): This toggles the RTSI
line. If the previous state was high, it will be toggled low, and vice
versa.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-25 NI-CAN Programmer Reference Manual

NC_ATTR_RTSI_FRAME (User RTSI Frame)

NC_ATTR_RTSI_SKIP (RTSI Skip)

Attribute Id NC_ATTR_RTSI_FRAME (UserRtsiFrame)

Hex Encoding 0x80000020

Data Type NCTYPE_UINT32

Permissions Config, Set, Get

Description Use this attribute when a CAN object is to be configured with the
attribute NC_ATTR_RTSI_MODE and an attribute value of
NC_RTSI_TIME_ON_IN.

Because the CAN object’s receiving structure contains only the
Timestamp and Data[8] fields, you must specify a 4-byte data frame
that NI-CAN can use in the first four bytes of the Data[8] field, to help
distinguish the RTSI event from other data frames. This user frame is
configured via the NC_ATTR_RTSI_FRAME attribute in the RTSI
configuration for the CAN object.

Attribute values: Any user-defined usigned32 number in hex. For
example, 0xAABBCCDD.

Note: In LabVIEW the default configuration is Ox5254349 which is
the ASCII value for RTSI.

Attribute Id NC_ATTR_RTSI_SKIP (RTSI Skip)

Hex Encoding 0x80000021

Data Type NCTYPE_UINT32

Permissions Config, Set, Get

Description This attribute defines the number of RTSI events to skip before
logging them to the read queue for that object. Use this attribute
with NC_ATTR_RTSI_MODE and with an attribute value of
NC_RTSI_TIME_ON_IN.

Attribute values: Any user number.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual 3-26 ni.com

NC_ATTR_RX_CHANGES_ONLY (Receive Changes Only)

NC_ATTR_STATE (Object State)

Attribute ID NC_ATTR_RX_CHANGES_ONLY

Hex Encoding 80000015

Data Type NCTYPE_BOOL

Permissions Config

Description The NC_ATTR_RX_CHANGES_ONLY attribute applies only to CAN
Object configurations in which the Communication Type
(NC_ATTR_COMM_TYPE) is set to Receive CAN data frames. For those
configurations, if NC_ATTR_RX_CHANGES_ONLY is set to NC_FALSE,
NI-CAN places data from all incoming CAN data frames into the read
queue. If this attribute is set to NC_TRUE, NI-CAN places data from an
incoming CAN data frame into the read queue only if it differs from
the previously received data.

This attribute has no effect on the usage of a watchdog timeout for the
CAN Object. For example, if this attribute is true and you also specify
a watchdog timeout, NI-CAN restarts the watchdog timeout every
time it receives a CAN data frame from the network, regardless of
whether the data differs from the previous value.

Attribute ID NC_ATTR_STATE

Hex Encoding 80000009

Data Type NCTYPE_STATE

Permissions Get

Description Current state of the CAN Object. In most cases, the NC_ST_STOPPED,
NC_ST_WARNING, and NC_ST_ERROR states are merely reflected up
from the underlying CAN Network Interface Object.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-27 NI-CAN Programmer Reference Manual

NC_ATTR_STATUS (Object Status)

NC_ATTR_WRITE_PENDING (Write Entries Pending)

NC_ATTR_WRITE_Q_LEN (Write Queue Length)

Attribute ID NC_ATTR_STATUS

Hex Encoding 8000000A

Data Type NCTYPE_STATUS

Permissions Get

Description Background status of the CAN Object. Unless the NC_ST_WARNING
or NC_ST_ERROR states are set in NC_ATTR_STATE, this attribute is
always NC_SUCCESS. When you read an error or warning from this
attribute, NI-CAN clears the appropriate state, and the background
status is set back to NC_SUCCESS. For communication errors such as
NC_ERR_CAN_BUS_OFF, this background status is the same as the
background status of the underlying CAN Network Interface Object.
If a background error occurs, you can read it from this attribute, or
obtain it from the next call to ncRead or ncWrite.

Attribute ID NC_ATTR_WRITE_PENDING

Hex Encoding 80000012

Data Type NCTYPE_UINT32

Permissions Get

Description Indicates the number of pending entries in the write queue. If
NC_ST_WRITE_PENDING is zero, the NC_ST_WRITE_SUCCESS
state is set (after NI-CAN successfully transmits the final frame).

Attribute ID NC_ATTR_WRITE_Q_LEN

Hex Encoding 80000014

Data Type NCTYPE_UINT32

Permissions Config

Description Length (maximum number of entries) for the write queue. For more
information, refer to the description of the ncWrite function in
Chapter 2, NI-CAN Functions.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual 3-28 ni.com

Values for Communication Type
The following sections describe the allowable values for NC_ATTR_COMM_TYPE
(Communication Type).

Receive Unsolicited (NC_CAN_COMM_RX_UNSOL)
Use this configuration to receive unsolicited CAN data frames from a remote device.

If the CAN data frames are expected periodically, you can use a watchdog timeout by setting
Period (NC_ATTR_PERIOD) to the desired number of milliseconds. Then, when the CAN
Object detects an incoming CAN data frame, it restarts the watchdog timeout. If the watchdog
timeout expires before the next incoming CAN data frame is received for the CAN Object,
NI-CAN reports a NC_ERR_TIMEOUT error. The watchdog timeout is used to verify that the
remote node still exists and is transmitting data as expected. If you do not want to use a
watchdog timeout, set Period to zero.

The Receive Changes Only (NC_ATTR_RX_CHANGES_ONLY) attribute can be used to receive
all data (NC_FALSE) or only changes (NC_TRUE).

Because this CAN Object does not transmit CAN data frames, the Transmit by Response
(NC_ATTR_CAN_TX_RESPONSE) attribute is ignored (assumes NC_FALSE).

RTSI: This Object configuration supports two RTSI modes:

• NC_RTSI_TIME_ON_IN (On RTSI Input—Timestamp RTSI event)

• NC_RTSI_OUT_ON_RX (RTSI Output on Receiving CAN Frame)

Refer to the CAN Object attributes section for information on using these RTSI attributes.

Receive Periodically Using Remote (NC_CAN_COMM_RX_PERIODIC)
Use this configuration to poll for data from a remote device periodically. Every period, the
object transmits a CAN remote frame, and NI-CAN places the resulting CAN data frame
response into the read queue.

The Period (NC_ATTR_PERIOD) attribute is used to configure the period between successive
CAN remote frame transmissions.

The Receive Changes Only (NC_ATTR_RX_CHANGES_ONLY) attribute can be used to receive
all data (NC_FALSE), or only changes (NC_TRUE).

Because this CAN Object does not transmit CAN data frames, the Transmit by Response
(NC_ATTR_CAN_TX_RESPONSE) attribute is ignored (assumes NC_FALSE).

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-29 NI-CAN Programmer Reference Manual

Receive Value by Call Using Remote (NC_CAN_COMM_RX_BY_CALL)
Use this configuration to poll for data from a remote device using the ncWrite function.
You must call ncWrite with DataSize zero to transmit a CAN remote frame. NI-CAN
places the resulting CAN data frame response into the read queue.

If you want to specify the minimum amount of time between subsequent transmission of CAN
remote frames, you can specify a minimum interval by setting Period (NC_ATTR_PERIOD) to
the desired number of milliseconds. You configure the minimum interval as a promise to other
nodes on the network that the object will not transmit its CAN frames with needless
frequency, thus precluding transfer by lower priority CAN frames. You can use a write queue
in conjunction with the minimum intervals to guarantee that the desired number of frames is
transmitted on the network.

The Receive Changes Only (NC_ATTR_RX_CHANGES_ONLY) can be used to receive all data
(NC_FALSE) or only changes (NC_TRUE).

Because this CAN Object does not transmit CAN data frames, the Transmit by Response
(NC_ATTR_CAN_TX_RESPONSE) attribute is ignored (assumes NC_FALSE).

Transmit Data Periodically (NC_CAN_COMM_TX_PERIODIC)
Use this configuration to transmit a CAN data frame to a remote device periodically. The
Period (NC_ATTR_PERIOD) attribute is used to configure the period between successive CAN
data frame transmissions.

When NI-CAN transmits the last entry of the write queue, that entry is used every period until
you provide a new entry using ncWrite. With this behavior, every entry is guaranteed to be
transmitted at least once, and the object always has data available for transmission. If the write
queue is empty when communication starts, the first periodic transmission does not occur
until you provide a valid data value using ncWrite.

Because this CAN Object does not receive CAN data frames, the Receive Changes Only
(NC_ATTR_RX_CHANGES_ONLY) attribute is ignored (assumes NC_FALSE).

The Transmit by Response (NC_ATTR_CAN_TX_RESPONSE) attribute can be used to ignore
incoming CAN remote frames (NC_FALSE), or to transmit previous data when a CAN remote
frame is received (NC_TRUE).

RTSI: This Object configuration supports two RTSI modes:

• NC_RTSI_TX_ON_IN (On RTSI Input—Transmit CAN Frame)

• NC_RTSI_OUT_ON_TX (RTSI Output on Transmitting CAN Frame)

Refer to the CAN Object attributes section for information on using these RTSI attributes.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual 3-30 ni.com

Transmit Value by Response Only (NC_CAN_COMM_TX_RESP_ONLY)
Use this configuration to transmit CAN data frames only in response to an incoming CAN
remote frame. When you call ncWrite, the data is placed in the write queue, and remains
there until a CAN remote frame is received.

If the CAN remote frames are expected periodically, you can specify a watchdog timeout by
setting Period (NC_ATTR_PERIOD) to the desired number of milliseconds. Then, when the
CAN Object detects an incoming CAN remote frame, it restarts the watchdog timeout. If the
watchdog timeout expires before the next incoming CAN remote frame is received for the
CAN Object, NI-CAN reports an NC_ERR_TIMEOUT error. The watchdog timeout is used to
verify that the remote node still exists and is transmitting CAN remote frames as expected. If
you do not want to use a watchdog timeout, set Period to zero.

Because this CAN Object does not receive CAN data frames, the Receive Changes Only
(NC_ATTR_RX_CHANGES_ONLY) attribute is ignored (assumes NC_FALSE).

Because this CAN Object always responds to incoming CAN remote frames, the Transmit by
Response (NC_ATTR_CAN_TX_RESPONSE) attribute is ignored (assumes NC_TRUE).

Transmit Data by Call (NC_CAN_COMM_TX_BY_CALL)
Use this configuration to transmit a CAN data frame when ncWrite is called.

If you want to specify the minimum amount of time between subsequent transmission of CAN
data frames, you can specify a minimum interval by setting Period (NC_ATTR_PERIOD) to the
desired number of milliseconds (see Receive Value by Call Using Remote, earlier in this
chapter).

Because this CAN Object does not receive CAN data frames, the Receive Changes Only
(NC_ATTR_RX_CHANGES_ONLY) attribute is ignored (assumes NC_FALSE).

The Transmit by Response (NC_ATTR_CAN_TX_RESPONSE) attribute can be used to ignore
incoming CAN remote frames (NC_FALSE), or to transmit previous data when a CAN remote
frame is received (NC_TRUE).

RTSI: This Object configuration supports two RTSI modes:

• NC_RTSI_TX_ON_IN (On RTSI Input—Transmit CAN Frame)

• NC_RTSI_OUT_ON_TX (RTSI Output on Transmitting CAN Frame)

Refer to the CAN Object attributes section for information on using these RTSI attributes.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-31 NI-CAN Programmer Reference Manual

Transmit Periodic Waveform (NC_CAN_COMM_TX_WAVEFORM)
Use this configuration to transmit a fixed sequence of CAN data frames over and over, one
CAN data frame every period. By varying the data value in each CAN data frame, this
configuration can be used to transmit a waveform to a remote device.

The Period (NC_ATTR_PERIOD) attribute is used to configure the period between successive
CAN data frame transmissions.

Because this CAN Object does not receive CAN data frames, the Receive Changes Only
(NC_ATTR_RX_CHANGES_ONLY) attribute is ignored (assumes NC_FALSE).

The Transmit by Response (NC_ATTR_CAN_TX_RESPONSE) attribute can be used to ignore
incoming CAN remote frames (NC_FALSE), or to transmit previous data when a CAN remote
frame is received (NC_TRUE).

The following steps illustrate the typical usage of Transmit Periodic Waveform.

1. Configure the CAN Network Interface Object with Start On Open false, then configure
the object.

2. Configure the CAN Object as Transmit Periodic Waveform and set a nonzero Write
Queue length, then open the Object.

3. Call ncWrite for the CAN Object, once for every entry specified for the Write Queue
Length.

4. Use ncAction to start the CAN Network Interface Object (not the CAN Object).

The CAN Object transmits the first entry in the write queue, then waits the specified
Period, then transmits the second entry, and so on. After the last entry is transmitted, the
CAN Object waits the specified Period, then transmits the first entry again.

5. You can use ncAction to stop and restart the CAN Object’s transmissions. When the
CAN Object is stopped, you can use ncWrite to provide new waveform entries. When
the write queue is full, ncWrite always replaces the first (oldest) entry in the queue.

RTSI: This Object configuration supports two RTSI modes:

• NC_RTSI_TX_ON_IN (On RTSI Input—Transmit CAN Frame)

• NC_RTSI_OUT_ON_TX (RTSI Output on Transmitting CAN Frame)

Refer to the CAN Object attributes section for information on using these RTSI attributes.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual 3-32 ni.com

Examples of Different Communication Types
The following figures demonstrate how you can use the Communication Type attribute for
actual network data transfer. Each figure shows two separate NI-CAN applications that are
physically connected across a CAN network.

Figure 3-1 shows a CAN Object that periodically transmits data to another CAN Object.
The receiving CAN Object can queue up to five data values.

Figure 3-1. Example of Periodic Transmission

Figure 3-2 shows a CAN Object that polls data from another CAN Object. NI-CAN transmits
the CAN remote frame when you call ncWrite.

Figure 3-2. Example of Polling Remote Data Using ncWrite

Your
Application

Periodic Timer
(Obtains Data to

Transmit Every Period)

Receive Unsolicited
NC_ATTR_READ_Q_LEN=5

NC_ATTR_RX_CHANGES_ONLY=NC_FALSE

Read Queue

Transmit Data Periodically
NC_ATTR_WRITE_Q_LEN=0

ncWritencRead

NI-CAN Driver NI-CAN DriverCAN
Network

Your
Application

Response Uses
Most Recent
Write Data

Receive Data by Call Using Remote
NC_ATTR_READ_Q_LEN=0

Transmit by Response Only
NC_ATTR_WRITE_Q_LEN=0

NI-CAN Driver NI-CAN DriverCAN
Network

ncWrite

ncRead

ncWrite

Your
Application

Your
Application

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-33 NI-CAN Programmer Reference Manual

Figure 3-3 shows a CAN Object that polls data from another CAN Object. NI-CAN transmits
the remote frame periodically and places only changed data into the read queue.

Figure 3-3. Example of Periodic Polling of Remote Data

Response Uses
Most Recent
Write Data

Receive Periodically Using Remote
NC_ATTR_READ_Q_LEN=3

NC_ATTR_RX_CHANGES_ONLY=NC_TRUE

Transmit by Response Only
NC_ATTR_WRITE_Q_LEN=0

Check For
Different Value

Periodic Timer

NI-CAN Driver NI-CAN DriverCAN
Network

ncRead ncWrite

Your
Application

Your
Application

© National Instruments Corporation 4-1 NI-CAN Programmer Reference Manual

4
RTSI Programming

This chapter consolidates the Real Time System Integration (RTSI)
programming features available in NI-CAN. This information is also in the
CAN Network Interface Object and CAN Object attributes sections of
Chapter 3, NI-CAN Objects, and is useful when used in conjunction with
the object specifics.

Description
RTSI is a bus that interconnects National Instruments DAQ, IMAQ,
Motion, and CAN boards. This feature allows synchronization of DAQ,
IMAQ, Motion, and CAN boards by allowing exchange of timing signals.
Using RTSI, a device (board) can control one or more slave devices.
PCI/AT boards require a ribbon cable for the connections, but for PXI
boards the connections are available on the PXI chassis backplane. Refer
to the getting started manual for your version of the Windows operating
system for more details on the hardware connector.

In NI-CAN, RTSI is configured via attributes in either the Network
Interface or the CAN Object configuration.

In C, the configuration is done by adding new elements to
AttributeIdList and AttrValueList before calling ncConfig.

In LabVIEW, the configuration is done via the Network Interface Config
cluster or the CAN Object Configuration Cluster, which has an optional
input to wire an RTSI configuration cluster. Refer to the ncConfig
function for further details.

The following is a summary of the attributes and possible values that these
attributes can have. For hex encoding of the attributes, refer to the CAN
Network Interface Object or CAN Object attributes sections of Chapter 3,
NI-CAN Objects, or to the nican.h file.

Chapter 4 RTSI Programming

NI-CAN Programmer Reference Manual 4-2 ni.com

Attributes

NC_ATTR_RTSI_MODE (RTSI Mode)
This attribute defines whether a CAN object is to be configured as a RTSI
slave or master. The following values can be used:

The attribute values are described below.

NC_RTSI_NONE (Disable RTSI)
No RTSI use is needed for this object. If the object is set to this value, all
other RTSI configuration is ignored.

NC_RTSI_TX_ON_IN (On RTSI Input—Transmit CAN Frame)
Network Interface: In this mode, NI-CAN will transmit the most recent
frame on an incoming RTSI trigger on the RTSI line configured via
NC_ATTR_RTSI_SIGNAL. To begin transmission, a frame must be written
to the write queue of the object (by calling ncWrite) and an RTSI signal
applied to the configured RTSI line. NI-CAN will retransmit the last frame
until a new frame is enqueued.

CAN Object: In this mode, the CAN Object can be configured as:

• NC_CAN_COMM_TX_BY_CALL (transmit frame by calling ncWrite)

• NC_CAN_COMM_TX_PERIODIC (periodic transmission)

• NC_CAN_COMM_TX_WAVEFORM (waveform transmit)

Attribute Values in C Attribute Values in LabVIEW

NC_RTSI_NONE Disable RTSI

NC_RTSI_TX_ON_IN On RTSI Input—Transmit CAN
Frame

NC_RTSI_TIME_ON_IN On RTSI Input—Timestamp RTSI
event

NC_RTSI_OUT_ON_RX RTSI Output on Receiving CAN
Frame

NC_RTSI_OUT_ON_TX RTSI Output on Transmitting
CAN Frame

NC_RTSI_OUT_ACTION_ONLY RTSI Output on ncAction call

Chapter 4 RTSI Programming

© National Instruments Corporation 4-3 NI-CAN Programmer Reference Manual

In all of the three configurations, a CAN frame is transmitted on every
incoming RTSI trigger. The period is ignored (if nonzero). Refer to the
CAN Object section of Chapter 3, NI-CAN Objects, for instructions to set
up the CAN object for each communication type.

NC_RTSI_TIME_ON_IN (On RTSI Input—Timestamp RTSI event)
Network Interface: In this mode, NI-CAN will timestamp an incoming
RTSI trigger on the RTSI line configured via NC_ATTR_RTSI_SIGNAL and
enqueue (in the object’s read queue) a frame containing special entries in
the following fields (as noted):

Timestamp: Time when RTSI event occurred

ArbitrationId: 0x40000001

(NC_FL_CAN_ARBID_INFO |

NC_ARBID_INFO_RTSI_INPUT)

Hex coding:

NC_FL_CAN_ARBID_INFO 0x40000000

NC_ARBID_INFO_RTSI_INPUT 0x00000001

IsRemote: unchanged

DataLength: RTSI line number that produces the event

Data[8]: unchanged

CAN Object: Because the CAN object’s receiving structure contains only
the Timestamp and Data[8] fields, you must specify a 4-byte data frame that
NI-CAN can use in the first four bytes of the Data[8] field, to help
distinguish the RTSI event from other data frames. This user frame is
configured via the NC_ATTR_RTSI_FRAME attribute in the CAN object
RTSI configuration.

This attribute is ignored when a Network Interface is being configured.

NC_RTSI_OUT_ON_RX (RTSI Output on Receiving CAN frame)
Network Interface & CAN Objects: In this mode, NI-CAN will output an
RTSI trigger on the line configured via NC_ATTR_RTSI_SIGNAL
whenever a frame is enqueued in the object read queue.

Chapter 4 RTSI Programming

NI-CAN Programmer Reference Manual 4-4 ni.com

NC_RTSI_OUT_ON_TX (RTSI Output on Transmitting CAN frame)
Network Interface & CAN Objects: In this mode, NI-CAN will output an
RTSI trigger on the line configured via NC_ATTR_RTSI_SIGNAL
whenever a frame is successfully transmitted.

NC_RTSI_OUT_ACTION_ONLY (RTSI Output on ncAction call)
Network Interface & CAN Objects: In this mode, NI-CAN will output
an RTSI trigger on the line configured via NC_ATTR_RTSI_SIGNAL
whenever user calls the ncAction function. With this function, a user can
set/toggle a RTSI line high or low.

NC_ATTR_RTSI_SIGNAL (RTSI Line Number)
This attribute defines the RTSI signal that must be associated with the CAN
object. This attribute must be used with the Network Interface and CAN
objects for all desired RTSI modes.

Attribute values: 0 to 7 (for RTSI signal lines).

Note In the hardware, four RTSI lines are for input and four lines are for output. Hence,
four CAN objects can configure RTSI lines for input and four CAN objects can configure
RTSI lines for output. An error 0x8000000D (#define NC_ERR_RSRC_LIMITS
0x0000000D) will be reported when these limits are exceeded.

Note For low-speed and dual-speed boards, two lines are available as inputs and three (3)
lines are available as outputs. The unavailable lines are used for low-speed transceiver fault
reporting.

There is no limitation on which RTSI line number can be used as input or
output.

NC_ATTR_RTSI_SIG_BEHAV (RTSI Behavior)
Use this attribute when a CAN object is used to output RTSI signals when
CAN is the RTSI driver. This attribute must be used with the Network
Interface and CAN objects that output an RTSI trigger.

Attribute Values in C Attribute Values in LabVIEW

NC_RTSISIG_PULSE Output RTSI Pulse

NC_RTSISIG_TOGGLE Toggle RTSI Line

Chapter 4 RTSI Programming

© National Instruments Corporation 4-5 NI-CAN Programmer Reference Manual

The attribute values are:

• NC_RTSISIG_PULSE (Output RTSI Pulse): This pulses the RTSI line
with a 100 µs pulse.

• NC_RTSISIG_TOGGLE (Toggle RTSI Line): This toggles the RTSI
line. If the previous state was high, it will be toggled low, and vice
versa.

NC_ATTR_RTSI_FRAME (UserRTSIFrame)
Use this attribute when a CAN object is to be configured with the
attribute NC_ATTR_RTSI_MODE and with an attribute value of
NC_RTSI_TIME_ON_IN.

Because the CAN object’s receiving structure contains only the Timestamp
and Data[8] fields, you must specify a 4-byte data frame that NI-CAN can
use in the first four bytes of the Data[8] field, to help distinguish the RTSI
event from other data frames. This user frame is configured via the
NC_ATTR_RTSI_FRAME attribute in the RTSI configuration for the CAN
object.

Attribute values: Any user-defined unsigned32 number in hex. For
example, 0xAABBCCDD.

NC_ATTR_RTSI_SKIP (RTSI Skip)
This attribute defines the number of RTSI events to skip before logging
them to the read queue for that object. Use this attribute with
NC_ATTR_RTSI_MODE and an attribute value of NC_RTSI_TIME_ON_IN.

Attribute values: Any user number.

Examples
The following examples are available:

• C programming (in the \\nican\examples\CAN-DAQ
Synchronization folder)

CAN Master functionality is shown in the following examples:

– Network Interface controls RTSI on CAN

Transmit.cpp

– Network Interface controls RTSI manually.cpp

– CAN Object controls RTSI on Unsolicited

Receive.cpp

Chapter 4 RTSI Programming

NI-CAN Programmer Reference Manual 4-6 ni.com

CAN Slave (DAQ Master) functionality is shown in the following
examples:

– Network Interface transmits CAN frame on RTSI.cpp

– Network Interface Read Queue receives time stamp

on RTSI.cpp

– CAN Object Read Queue receives time stamp on

RTSI.cpp

• LabVIEW programming (in \\your LV folder\Examples\

nican)

CAN Master functionality is shown in the following examples:

– Network Interface controls RTSI on ncAction.vi

– Network Interface controls RTSI on CAN Receive.vi

– Network Interface controls RTSI on CAN

Transmit.vi

– CAN Object controls RTSI on ncAction.vi

– CAN Object controls RTSI on Periodic Transmit.vi

– CAN Object controls RTSI on Unsolicited

Receive.vi

– CAN Object controls RTSI on Waveform Transmit.vi

CAN Slave (DAQ Master) functionality is shown in the following
examples:

– Network Interface Read Queue receives time stamp

on RTSI.vi

– Network Interface transmits CAN frame on RTSI.vi

– CAN Object Read Queue receives time stamp on

RTSI.vi

– CAN Object transmits Periodic on RTSI.vi

– CAN Object transmit Waveform on RTSI.vi

For information about using the examples and which tester to use on the
DAQ board to test the functionality, refer to documentation in the C source
file and VI-Info (for LabVIEW examples).

© National Instruments Corporation A-1 NI-CAN Programmer Reference Manual

A
NI-CAN Object States

This appendix describes the NI-CAN object states.

Every object in NI-CAN contains a state attribute (NC_ATTR_STATE) with
the following format. The bits marked as 0 are reserved for future use.

Figure A-1. State Format

You can detect the object states using one of the following schemes:

• Call ncGetAttribute to get the NC_ATTR_STATE attribute.

• Call ncWaitForState to wait for one or more states to occur.

• Use ncCreateNotification to register a callback for one or more
states.

Table A-1 describes each object state.

31-6 5 4 3 2 1 0

0 WARNING ERROR 0 STOPPED WRITE

SUCCESS

READ

AVAIL

Table A-1. NI-CAN Object States

Constant Bitmask (Hex) Description

NC_ST_READ_AVAIL 00000001
(Bit 0)

Indicates that new data is available to be read
using ncRead. Set when data is received from
network, and cleared when all available data is
read.

NC_ST_WRITE_SUCCESS 00000002
(Bit 1)

Indicates that all data provided using ncWrite
has been successfully transmitted onto
network. Set when last transmission is
successful, and cleared by any call to
ncWrite.

Appendix A NI-CAN Object States

NI-CAN Programmer Reference Manual A-2 ni.com

NC_ST_STOPPED 00000004
(Bit 2)

Indicates that object is in stopped state (not
communicating on network). This state can
occur as result of calling ncAction with
NC_OP_STOP, or due to serious communication
error, such as CAN bus off, which causes
object to stop. If this state is clear, the object is
in its normal running state.

NC_ST_ERROR 00000010
(Bit 4)

Indicates that an error status has occurred in
background. Set when error occurs, and
cleared when you obtain status value. Status
value is obtained by getting NC_ATTR_STATUS
attribute, or on next call to ncRead or
ncWrite. This state indicates background
problems such as communication errors, and is
not set for problems that are associated with
individual function calls (such as an invalid
parameter).

NC_ST_WARNING 00000020
(Bit 5)

Indicates that warning status has occurred in
background. Set when warning occurs, and
cleared when you obtain status value. Status
value is obtained by getting NC_ATTR_STATUS
attribute, or on next call to ncRead or
ncWrite. This state indicates background
problems such as communication warnings,
and is not set for problems that are associated
with individual function calls (such as an
invalid parameter).

Table A-1. NI-CAN Object States (Continued)

Constant Bitmask (Hex) Description

© National Instruments Corporation B-1 NI-CAN Programmer Reference Manual

B
Status Codes and Qualifiers

This appendix describes the NI-CAN status codes and the qualifiers for
each code.

Each NI-CAN function returns a value that indicates the status of the
function call. Your application should check this status after each NI-CAN
function call. The following sections describe the NI-CAN status.

NI-CAN Status Format
To provide the maximum amount of information, the status returned by
NI-CAN functions is encoded as a signed 32-bit integer. The format of this
integer is shown in Figure B-1.

Figure B-1. Status Format

Error/Warning Indicators (Severity)
The error and warning bits ensure that all NI-CAN errors generate a
negative status, and all NI-CAN warnings generate a positive status. The
error bit is set when a function does not perform the expected behavior,
resulting in a negative status. The warning bit is set when the function
performed as expected, but a condition exists that may require your
attention. If no error or warning occurs, the entire status is set to zero to
indicate success. Table B-1 summarizes the behavior of NI-CAN status.

31 30 29–16 15–0

Error Warning Qualifier Code

Appendix B Status Codes and Qualifiers

NI-CAN Programmer Reference Manual B-2 ni.com

Code
The code bits indicate the primary status code used for warning or errors.

Qualifier
The qualifier bits hold a qualifier for the warning or error code. It is specific
to individual values for the code field, and provides additional information
useful for detailed debugging. For example, if the status code indicates an
invalid function parameter, the qualifier holds a number which indicates the
exact parameter that is invalid (one for the first parameter, two for the
second, and so on). If no qualifier exists, this field has the value
NC_QUAL_NONE (0).

Checking Status in LabVIEW
For applications written in G (LabVIEW), status checking is basically
handled automatically. For all of the NI-CAN functions, the lower left and
right terminals provide status information using LabVIEW Error Clusters.
LabVIEW Error Clusters are designed so that status information flows
from one function to the next, and function execution stops when an error
occurs. For more information, refer to the Error Handling section in the
LabVIEW Online Reference.

In the NI-CAN implementation of Error Clusters, the status parameter is
set to true when an error occurs, and is set to false when a warning or
success occurs. The code parameter of the Error Cluster contains the code
and qualifier fields of the NI-CAN status. If the code parameter of the
Error Cluster is not zero, then a warning or error was detected. When the
status parameter is true, the source parameter of the Error Cluster
provides the name of the NI-CAN function in which the error occurred.

Within your LabVIEW Block Diagram, wire the Error in and Error

out terminals of all NI-CAN functions together in succession. When an
error is detected in any NI-CAN function (status parameter true), all

Table B-1. Determining Severity of Status

Status Result

Negative Error. Function did not perform expected behavior.

Zero Success. Function completed successfully.

Positive Warning. Function performed as expected, but a condition arose that
may require your attention.

Appendix B Status Codes and Qualifiers

© National Instruments Corporation B-3 NI-CAN Programmer Reference Manual

subsequent NI-CAN functions are skipped except for ncClose. The
ncClose function executes regardless of whether the incoming status is
true or false. This ensures that all NI-CAN objects are closed properly when
execution stops due to an error.

When a warning occurs in an NI-CAN function, execution proceeds
normally. To detect suspected warnings in your application, you can write
code in your Block Diagram to examine the code parameter, or you can use
the Probe Data tool on an Error out terminal during execution.

For each NI-CAN function, you can find numeric values for the returned
status code and qualifier in the online description of the function, which
you can access in the Block Diagram by selecting the function and typing
<Ctrl-H>.

Checking Status in C
For applications written in C or C++, you should define a function to handle
NI-CAN warnings and errors. When this function detects an error, it closes
all open objects, then exits the application. When this function detects a
warning, it can display a warning message or simply ignore the warning.
If the function has the following prototype:

void CheckStat(NCTYPE_STATUS stat, char *msg);

then your application invokes it as follows:

if (status != 0)

CheckStat(status, "NI-CAN error or warning");

For an example implementation of the CheckStat function, refer to the
C language examples in the NI-CAN examples directory.

When accessing the NI-CAN code and qualifier within your application,
you should use the constants defined in nican.h. These constants have the
same names as described later in this appendix. For example, to check for
a timeout, you would use code such as the following:

if (NC_STATCODE(status) == NC_ERR_TIMEOUT)

printf("NI-CAN timeout");

Appendix B Status Codes and Qualifiers

NI-CAN Programmer Reference Manual B-4 ni.com

NI-CAN Status Codes and Qualifiers
Table B-2 summarizes each NI-CAN status code (lower 16 bits of status). After the table, a
separate section for each status code lists the valid encodings for the entire status, including
the associated qualifier and severity.

Table B-2. Summary of Status Codes

Code
Hex Encoding of Code

(Lower 16 Bits) Description

NC_SUCCESS 0000 Success (no warning or error)

NC_ERR_TIMEOUT 0001 Timeout Expired

NC_ERR_DRIVER 0002 Implementation-specific error in
NI-CAN driver

NC_ERR_BAD_NAME 0003 Invalid or unrecognized object name

NC_ERR_BAD_PARAM 0004 Invalid function parameter

NC_ERR_BAD_VALUE 0005 Invalid attribute value

NC_ERR_ALREADY_OPEN 0006 Object already opened by another
application

NC_ERR_NOT_STOPPED 0007 Attempted to set a configuration
attribute while object was running

NC_ERR_OVERFLOW 0008 Queue overflow

NC_ERR_OLD_DATA 0009 Data returned from ncRead matches
data returned from previous call to
ncRead

NC_ERR_CAN_BUS_OFF 0101 Error or warning indicating large
number of CAN communication
errors

Appendix B Status Codes and Qualifiers

© National Instruments Corporation B-5 NI-CAN Programmer Reference Manual

NC_SUCCESS (0000 Hex)
Success (no warning or error).

Hex Status Encoding 00000000

NC_ERR_TIMEOUT (0001 Hex)
A timeout expired in the NI-CAN driver. The qualifier indicates the type of timeout that
expired.

Hex Status Encoding 80000001

Qualifier 0

Severity Success

Description The qualifier is always zero.

Qualifier NC_QUAL_TIMO_FUNCTION (0)

Severity Error

Description The timeout of ncWaitForState or ncCreateNotification
expired before any desired states occurred.

Solutions • Increase the value of the Timeout parameter to wait longer.

• If the timeout occurs while waiting for NC_ST_READ_AVAIL or
NC_ST_WRITE_SUCCESS, verify your CAN cable connections,
and ensure that remote devices are operating properly.

• If you wait only for a background error or warning, the timeout
is often the expected behavior, and you can ignore it.

Appendix B Status Codes and Qualifiers

NI-CAN Programmer Reference Manual B-6 ni.com

Hex Status Encoding 80010001

NC_ERR_DRIVER (0002 Hex)
An implementation-specific error has occurred in the NI-CAN driver, such as the inability to
allocate needed memory. This error should never occur under normal circumstances.

Hex Status Encoding 8xxx0002, 9xxx0002, Axxx0002, and Bxxx0002

Qualifier NC_QUAL_TIMO_WATCHDOG (1)

Severity Error

Description The watchdog timeout for a CAN Object expired, indicating that data
was not received at the rate expected. This error occurs in the
background and is returned by ncRead and ncWrite.

Solutions Verify your CAN cable connections, and ensure that remote devices
are operating properly.

If the remote device takes longer than expected to transmit data, you
can increase the period specified in the NC_ATTR_BKD_PERIOD
attribute.

Qualifier Varies

Severity Error

Description The qualifier (bits 16-29) holds a value that is specific to the
NI-CAN driver implementation.

Solutions Write down the status value, and contact National Instruments for
technical support.

Appendix B Status Codes and Qualifiers

© National Instruments Corporation B-7 NI-CAN Programmer Reference Manual

NC_ERR_BAD_NAME (0003 Hex)
The ObjName parameter of ncOpenObject or ncConfig contains an invalid or
unrecognized name.

Hex Status Encoding 80000003

Hex Status Encoding 80010003

Hex Status Encoding 80020003

NC_ERR_BAD_PARAM (0004 Hex)
A function parameter is invalid.

Qualifier 0

Severity Error

Description There is a basic syntax error such as an invalid character or a
single colon instead of a double colon.

Solutions • Verify that the object name does not contain invalid characters,
and that you use the syntax specified in ncOpenObject.

• If you are opening a user-defined alias, use the NI-CAN
Configuration utility to verify that the alias is defined in the
list of CAN Objects.

Qualifier 1

Severity Error

Description The CAN Network Interface Object name is invalid or unknown.

Solutions Use the NI-CAN Configuration utility to verify that the CAN Network
Interface Object is assigned a physical CAN port. The NI-CAN
Diagnostic utility also provides a list of valid CAN Network Interface
Object names.

Qualifier 1

Severity Error

Description The CAN Object name is invalid or unknown.

Solutions Verify that you use the syntax specified in the CAN Object section of
Chapter 3, NI-CAN Objects.

Appendix B Status Codes and Qualifiers

NI-CAN Programmer Reference Manual B-8 ni.com

Hex Status Encoding 800x0004

NC_ERR_BAD_VALUE (0005 Hex)
The attribute value for the specified attribute ID is invalid. For example, if you call
ncSetAttribute with the AttrId NC_ATTR_BAUD_RATE, and AttrPtr points to an
invalid baud rate such as 20005, NC_ERR_BAD_VALUE is returned.

Hex Status Encoding 80000005

Hex Status Encoding 8xxx0005

Qualifier Varies

Severity Error

Description The qualifier holds the position of the invalid parameter in the
C function prototype. For example, if the DataSize parameter of
ncRead is invalid, the qualifier is two (status 80020004).

Solutions Check the qualifier, then read the function description in Chapter 2,
NI-CAN Functions, to verify that you provide a valid value for the
specified parameter.

Qualifier 0 (for ncSetAttribute)

Severity Error

Description For ncSetAttribute, the qualifier is always zero.

Solutions Check the description of the attribute in Chapter 3, NI-CAN Objects,
and verify that the value you pass is valid.

Qualifier Varies (for ncAction and ncConfig)

Severity Error

Description For ncAction and ncConfig, this error indicates that although each
configuration attribute holds a valid value, the combination of values
is invalid. For example, if a CAN Object is configured as Transmit
Value Periodically, the period attribute must be nonzero. For this error,
the qualifier holds the low order bits of the AttrId of one of the
invalid attributes.

Solutions Using the attribute ID provided in the qualifier, check the description
of the attribute in Chapter 3, NI-CAN Objects, and verify that the value
you set works with the other attribute values.

Appendix B Status Codes and Qualifiers

© National Instruments Corporation B-9 NI-CAN Programmer Reference Manual

NC_ERR_ALREADY_OPEN (0006 Hex)
The object has already been opened by another application. If one application opens an object,
no other application can open or configure that object until the object is closed.

Hex Status Encoding 80000006

NC_ERR_NOT_STOPPED (0007 Hex)
You attempted to set a configuration attribute for an object while the object was running.
You can change attributes with Config permissions only when the object is stopped
(not communicating).

Hex Status Encoding 80000007

NC_ERR_OVERFLOW (0008 Hex)
There is a queue overflow.

Qualifier 0

Severity Error

Description The qualifier is always zero.

Solutions • If you have two or more applications that open the same object,
run only one application at a time.

• If two or more applications need to share an object, you can
alternate access by closing the object in one application, then
opening the object in another.

• Before exiting your application, verify that you call
ncCloseObject for every object opened. For LabVIEW, you
should implement a control on your front panel to stop the program
and close all objects. You should not use the LabVIEW Stop button
to stop execution, because doing so often prevents proper use of
ncCloseObject.

Qualifier 0

Severity Error

Description The qualifier is always zero.

Solutions • Configure the object prior to opening it, either within the NI-CAN
Configuration utility, or by using ncConfig.

• Use ncAction to stop and start communication as needed so that
you can update configuration attributes.

Appendix B Status Codes and Qualifiers

NI-CAN Programmer Reference Manual B-10 ni.com

Hex Status Encoding 80000008

Hex Status Encoding 80010008

Qualifier NC_QUAL_OVFL_WRITE

Severity Error

Description There is a write queue overflow. This error occurs when you call
ncWrite for a full write queue. It occurs only when the length of the
write queue is greater than zero.

Solutions • Increase the length of the write queue using the
NC_ATTR_WRITE_Q_LEN attribute.

• Prior to calling ncWrite, check NC_ATTR_WRITE_PENDING to
verify that it is less than the write queue length.

• If you merely want the most recent data to be transmitted, such as
for periodic transmission, set NC_ATTR_WRITE_Q_LEN to zero.

• Wait for the NC_ST_WRITE_SUCCESS state before calling
ncWrite to queue more data.

Qualifier NC_QUAL_OVFL_READ

Severity Error

Description There is a read queue overflow. This error occurs when new data is
received from the network for a full read queue, and NI-CAN discards
it. The error occurs only when the length of the read queue is greater
than zero. This error occurs in the background, and is returned by
ncRead and ncWrite.

Solutions • Increase the length of the read queue using the
NC_ATTR_READ_Q_LEN attribute.

• Call ncRead more often in your application. One way to do
this is to create a notification for NC_ST_READ_AVAIL using
ncCreateNotification, so that you can read data as soon
as it becomes available.

• If you merely want the most recent data from ncRead, set
NC_ATTR_READ_Q_LEN to zero.

• Check NC_ATTR_READ_PENDING for a given threshold prior to
calling ncRead.

Appendix B Status Codes and Qualifiers

© National Instruments Corporation B-11 NI-CAN Programmer Reference Manual

Hex Status Encoding 80020008

NC_ERR_OLD_DATA (0009 Hex)
The data returned from ncRead matches the data returned from the previous call to ncRead.
Because the old data is returned successfully, this status code has a warning severity, not error.

Hex Status Encoding 40000009

NC_ERR_CAN_BUS_OFF (0101 Hex)
This is an error or warning that can indicate many different CAN communication errors.
When the transmit or receive error counter of the CAN communications controller chip
increments above 96, a warning occurs. When the transmit error counter increments above
255 (bus off), an error occurs and the network interface is stopped. In both cases the qualifier
is set to the most recent detected communication error. This warning/error occurs in the
background, and is returned by ncRead and ncWrite. For more information, refer to the
CAN Network Interface Object section of Chapter 3, NI-CAN Objects.

Qualifier NC_QUAL_OVFL_CHIP

Severity Error

Description There is an overflow in the CAN communications controller chip.
This error occurs in the background and is returned by ncRead and
ncWrite.

Solutions Disable timestamping by setting the NC_ATTR_TIMESTAMPING
attribute to NC_FALSE.

Qualifier 0

Severity Warning

Description The qualifier is always zero.

Solutions • If you merely want to read the most recent data, ignore this
warning.

• Wait for the NC_ST_READ_AVAIL state before calling ncRead.

Appendix B Status Codes and Qualifiers

NI-CAN Programmer Reference Manual B-12 ni.com

The solutions for all of the qualifiers of the NC_ERR_CAN_BUS_OFF error follow the
descriptions.

Hex Status Encoding 40010101 and 80010101

Hex Status Encoding 40020101 and 80020101

Hex Status Encoding 40030101 and 80030101

Hex Status Encoding 40040101 and 80040101

Hex Status Encoding 40050101 and 80050101

Qualifier NC_QUAL_CAN_STUFF

Severity Varies

Description A stuff error has occurred (more than five equal bits in the frame).

Qualifier NC_QUAL_CAN_FORM

Severity Varies

Description The frame format is wrong.

Qualifier NC_QUAL_CAN_ACK

Severity Varies

Description The frame has not been acknowledged.

Qualifier NC_QUAL_CAN_BIT1

Severity Varies

Description One was transmitted but zero was detected.

Qualifier NC_QUAL_CAN_BIT0

Severity Varies

Description Zero was transmitted but one was detected.

Appendix B Status Codes and Qualifiers

© National Instruments Corporation B-13 NI-CAN Programmer Reference Manual

Hex Status Encoding 40060101 and 80060101

Solutions
The following solutions apply to all of the qualifiers for the NC_ERR_CAN_BUS_OFF error:

• CAN communication errors are often caused by defective cabling. Verify that your
connector, cables, and devices are functioning properly.

• If you attempt to transmit a CAN frame without another CAN device connected, or with
the bus powered off, the NC_ERR_CAN_BUS_OFF warning occurs. Connect your other
CAN devices prior to attempting communication.

Qualifier NC_QUAL_CAN_CRC

Severity Varies

Description The CRC checksum is invalid.

© National Instruments Corporation C-1 NI-CAN Programmer Reference Manual

C
Technical Support Resources

Web Support
National Instruments Web support is your first stop for help in solving
installation, configuration, and application problems and questions. Online
problem-solving and diagnostic resources include frequently asked
questions, knowledge bases, product-specific troubleshooting wizards,
manuals, drivers, software updates, and more. Web support is available
through the Technical Support section of ni.com

NI Developer Zone
The NI Developer Zone at ni.com/zone is the essential resource for
building measurement and automation systems. At the NI Developer Zone,
you can easily access the latest example programs, system configurators,
tutorials, technical news, as well as a community of developers ready to
share their own techniques.

Customer Education
National Instruments provides a number of alternatives to satisfy your
training needs, from self-paced tutorials, videos, and interactive CDs to
instructor-led hands-on courses at locations around the world. Visit the
Customer Education section of ni.com for online course schedules,
syllabi, training centers, and class registration.

System Integration
If you have time constraints, limited in-house technical resources, or other
dilemmas, you may prefer to employ consulting or system integration
services. You can rely on the expertise available through our worldwide
network of Alliance Program members. To find out more about our
Alliance system integration solutions, visit the System Integration section
of ni.com

Appendix C Technical Support Resources

NI-CAN Programmer Reference Manual C-2 ni.com

Worldwide Support
National Instruments has offices located around the world to help address
your support needs. You can access our branch office Web sites from the
Worldwide Offices section of ni.com. Branch office Web sites provide
up-to-date contact information, support phone numbers, e-mail addresses,
and current events.

If you have searched the technical support resources on our Web site and
still cannot find the answers you need, contact your local office or National
Instruments corporate. Phone numbers for our worldwide offices are listed
at the front of this manual.

© National Instruments Corporation G-1 NI-CAN Programmer Reference Manual

Glossary

Prefix Meanings Value

n- nano- 10–9

m- milli- 10–3

k- kilo- 103

M- mega- 106

A

action See method.

actuator A device that uses electrical, mechanical, or other signals to change
the value of an external, real-world variable. In the context of device
networks, actuators are devices that receive their primary data value from
over the network; examples include valves and motor starters. Also known
as final control element.

Application
Programming
Interface (API)

A collection of functions used by a user application to access hardware.
Within NI-CAN, you use API functions to make calls into the NI-CAN
driver.

arbitration ID An 11- or 29-bit ID transmitted as the first field of a CAN frame. The
arbitration ID determines the priority of the frame, and is normally used
to identify the data transmitted in the frame.

attribute The externally visible qualities of an object; for example, an instance Mary
of class Human could have the attributes Gender and Age, with the values
Female and 31. Also known as property.

Glossary

NI-CAN Programmer Reference Manual G-2 ni.com

B

b Bits.

bus off A CAN node goes into the bus off state when its transmit error counter
increments above 255. The node does not participate in network traffic,
because it assumes that a defect exists that must be corrected.

C

CAN Controller Area Network.

CAN/LS See Low-speed CAN.

CAN data frame Frame used to transmit the actual data of a CAN Object. The RTR bit
is clear, and the data length indicates the number of data bytes in the frame.

CAN frame In addition to fields used for error detection/correction, a CAN frame
consists of an arbitration ID, the RTR bit, a four-bit data length, and zero
to eight bytes of data.

CAN Network
Interface Object

Within NI-CAN, an object that encapsulates a CAN network interface on
the host computer.

CAN Object A CAN identifier, along with its associated data.

CAN remote frame Frame used to request data for a CAN Object from a remote node; the RTR
bit is set, and the data length indicates the amount of data desired (but no
data bytes are included).

class A set of objects that share a common structure and a common behavior.

connection An association between two or more nodes on a network that describes
when and how data is transferred.

controller A device that receives data from sensors and sends data to actuators in order
to hold one or more external, real-world variables at a certain level or
condition. A thermostat is a simple example of a controller.

Glossary

© National Instruments Corporation G-3 NI-CAN Programmer Reference Manual

D

device See node.

device network Multi-drop digital communication network for sensors, actuators, and
controllers.

DLL Dynamic link library.

DMA Direct memory access.

E

error active A CAN node is in error active state when both the receive and transmit error
counters are below 128.

error counters Every CAN node keeps a count of how many receive and transmit errors
have occurred. The rules for how these counters are incremented and
decremented are defined by the CAN protocol specification.

error passive A CAN node is in error passive state when one or both of its error counters
increment above 127. This state is a warning that a communication problem
exists, but the node is still participating in network traffic.

extended
arbitration ID

A 29-bit arbitration ID. Frames that use extended IDs are often referred to
as CAN 2.0 Part B (the specification that defines them).

F

FCC Federal Communications Commission.

frame A unit of information transferred across a network from one node to
another; the protocol defines the meaning of the bit fields within a frame.
Also known as packet.

H

hex Hexadecimal.

Hz Hertz.

Glossary

NI-CAN Programmer Reference Manual G-4 ni.com

I

instance An abstraction of a specific real-world thing; for example, Mary is an
instance of the class Human. Also known as object.

ISO International Standards Organization.

K

KB Kilobytes of memory.

L

LabVIEW Laboratory Virtual Instrument Engineering Workbench.

local Within NI-CAN, anything that exists on the same host (personal computer)
as the NI-CAN driver.

Low-speed CAN Implementation of CAN as defined in ISO 11519.

M

MB Megabytes of memory.

method An action performed on an instance to affect its behavior; the externally
visible code of an object. Within NI-CAN, you use NI-CAN functions to
execute methods for objects. Also known as service, operation, and action.

minimum interval For a given connection, the minimum amount of time between subsequent
attempts to transmit frames on the connection. Some protocols use
minimum intervals to guarantee a certain level of overall network
performance.

multi-drop A physical connection in which multiple devices communicate with one
another along a single cable.

Glossary

© National Instruments Corporation G-5 NI-CAN Programmer Reference Manual

N

network interface A node’s physical connection onto a network.

NI-CAN driver Device driver and/or firmware that implement all the specifics of a CAN
network interface. Within NI-CAN, this software implements the CAN
Network Interface Object as well as all objects above it in the object
hierarchy.

node A physical assembly, linked to a communication line (cable), capable of
communicating across the network according to a protocol specification.
Also known as device.

notification Within NI-CAN, an operating system mechanism that the NI-CAN driver
uses to communicate events to your application. You can think of a
notification of as an API function, but in the opposite direction.

O

object See instance.

object-oriented A software design methodology in which classes, instances, attributes, and
methods are used to hide all of the details of a software entity that do not
contribute to its essential characteristics.

P

peer-to-peer Network connection in which data is transmitted from the source to its
destination(s) without need for an explicit request. Although data transfer
is generally unidirectional, the protocol often uses low level
acknowledgments and error detection to ensure successful delivery.

periodic Connections that transfer data on the network at a specific rate.

polled Request/response connection in which a request for data is sent to a device,
and the device sends back a response with the desired value.

protocol A formal set of conventions or rules for the exchange of information among
nodes of a given network.

Glossary

NI-CAN Programmer Reference Manual G-6 ni.com

R

RAM Random-access memory.

remote Within NI-CAN, anything that exists in another node of the device network
(not on the same host as the NI-CAN driver).

Remote Transmission
Request (RTR) bit

This bit follows the arbitration ID in a frame, and indicates whether the
frame is the actual data of the CAN Object (CAN data frame), or whether
the frame is a request for the data (CAN remote frame).

request/response Network connection in which a request is transmitted to one or more
destination nodes, and those nodes send a response back to the requesting
node. In industrial applications, the responding (slave) device is usually a
sensor or actuator, and the requesting (master) device is usually a controller.
Also known as master/slave.

resource Hardware settings used by National Instruments CAN hardware, including
an interrupt request level (IRQ) and an 8 KB physical memory range (such
as D0000 to D1FFF hex).

S

s Seconds.

sensor A device that measures electrical, mechanical, or other signals from an
external, real-world variable; in the context of device networks, sensors are
devices that send their primary data value onto the network; examples
include temperature sensors and presence sensors. Also known as
transmitter.

standard
arbitration ID

An 11-bit arbitration ID. Frames that use standard IDs are often referred to
as CAN 2.0 Part A; standard IDs are by far the most commonly used.

U

unsolicited Connections that transmit data on the network sporadically based on an
external event. Also known as nonperiodic, sporadic, and event driven.

Glossary

© National Instruments Corporation G-7 NI-CAN Programmer Reference Manual

V

VI Virtual Instrument.

W

watchdog timeout A timeout associated with a connection that expects to receive network data
at a specific rate. If data is not received before the watchdog timeout
expires, the connection is normally stopped. You can use watchdog
timeouts to verify that the remote node is still operational.

© National Instruments Corporation I-1 NI-CAN Programmer Reference Manual

Index

A
attributes

See CAN Network Interface Object.
See CAN Object.
See RTSI programming.

B
bus off states, CAN Network Interface

Object, 3-3

C
C/C++ applications, status checking, B-3
callback. See ncCreateNotification function.
CAN Network Interface Object, 3-2

attributes, 3-4
NC_ATTR_ABS_TIME, 3-4
NC_ATTR_BAUD_RATE, 3-4
NC_ATTR_CAN_COMP_STD, 3-5
NC_ATTR_CAN_COMP_XTD, 3-6
NC_ATTR_CAN_MASK_STD, 3-6
NC_ATTR_CAN_MASK_XTD, 3-7
NC_ATTR_LOG_COMM_

ERRS, 3-12
NC_ATTR_PROTOCOL, 3-7
NC_ATTR_PROTOCOL_

VERSION, 3-7
NC_ATTR_READ_MULT_

SIZE, 3-13
NC_ATTR_READ_PENDING, 3-8
NC_ATTR_READ_Q_LEN, 3-8
NC_ATTR_RSTI_SKIP, 3-17
NC_ATTR_RTSI_MODE, 3-13
NC_ATTR_RTSI_SIG_BEHAV, 3-16
NC_ATTR_RTSI_SIGNAL, 3-16
NC_ATTR_RX_Q_LEN, 3-11

NC_ATTR_SOFTWARE_
VERSION, 3-8

NC_ATTR_START_ON_OPEN, 3-9
NC_ATTR_STATE, 3-9
NC_ATTR_STATUS, 3-10
NC_ATTR_WRITE_PENDING, 3-10
NC_ATTR_WRITE_Q_LEN, 3-10

description, 3-2
encapsulates, 3-2
error active, error passive, and bus off

states, 3-3
object name, 3-2

CAN Object, 3-17
attributes, 3-18

NC_ATTR_CAN_DATA_
LENGTH, 3-18

NC_ATTR_CAN_TX_
RESPONSE, 3-18

NC_ATTR_COMM_TYPE, 3-19
NC_ATTR_PERIOD, 3-19
NC_ATTR_READ_MULT_

SIZE, 3-21
NC_ATTR_READ_PENDING, 3-20
NC_ATTR_READ_Q_LEN, 3-20
NC_ATTR_RTSI_FRAME, 3-25
NC_ATTR_RTSI_MODE, 3-21
NC_ATTR_RTSI_SIG_BEHAV, 3-24
NC_ATTR_RTSI_SIGNAL, 3-24
NC_ATTR_RTSI_SKIP, 3-25
NC_ATTR_RX_CHANGES_

ONLY, 3-26
NC_ATTR_STATE, 3-26
NC_ATTR_STATUS, 3-27
NC_ATTR_WRITE_PENDING, 3-27
NC_ATTR_WRITE_Q_LEN, 3-27

Index

NI-CAN Programmer Reference Manual I-2 ni.com

communication type values, 3-28
Receive Periodically Using Remote

(NC_CAN_COMM_RX_
PERIODIC), 3-28

Receive Unsolicited
(NC_CAN_COMM_RX_
UNSOL), 3-28

Receive Value by Call Using Remote
(NC_CAN_COMM_RX_BY_
CALL), 3-29

Transmit Data by Call
(NC_CAN_COMM_TX_BY_
CALL), 3-30

Transmit Data Periodically
(NC_CAN_COMM_TX_
PERIODIC), 3-29

Transmit Periodic Waveform
(NC_CAN_COMM_TX_
WAVEFORM), 3-31

Transmit Value by Response Only
(NC_CAN_COMM_TX_RESP_
ONLY), 3-30

description, 3-17
encapsulates, 3-17
object name, 3-17

code, NI-CAN status format, B-2
communication type attribute

(NC_ATTR_COMM_TYPE), 3-19
communication type examples, 3-32

periodic polling of remote data
(figure), 3-33

periodic transmission (figure), 3-32
polling remote data using ncWrite

(figure), 3-32
communication type values

Receive Periodically Using Remote
(NC_CAN_COMM_RX_
PERIODIC), 3-28

Receive Unsolicited
(NC_CAN_COMM_RX_
UNSOL), 3-28

Transmit Data Periodically
(NC_CAN_COMM_TX_
PERIODIC), 3-29

Transmit Periodic Waveform
(NC_CAN_COMM_TX_
WAVEFORM), 3-31

Transmit Value by Response Only
(NC_CAN_COMM_TX_RESP_
ONLY), 3-30

conventions used in this manual, xi
customer education, C-1

D
data types, NI-CAN host (table), 1-1

E
error active, CAN Network Interface

Object, 3-3
error passive, CAN Network Interface

Object, 3-3
error warning indicators (severity), B-1
example of periodic transmission

(figure), 3-32

F
functions. See NI-CAN functions.

G
glossary of terms, G-1

H
how to use this manual set, xi

L
LabVIEW applications, status checking, B-2

Index

© National Instruments Corporation I-3 NI-CAN Programmer Reference Manual

M
manual set, how to use, xi

N
National Instruments Web support, C-1
NC_ATTR_ABS_TIME, 3-4
NC_ATTR_BAUD_RATE, 3-4
NC_ATTR_CAN_COMP_STD, 3-5
NC_ATTR_CAN_COMP_XTD, 3-6
NC_ATTR_CAN_DATA_LENGTH, 3-18
NC_ATTR_CAN_MASK_STD, 3-6
NC_ATTR_CAN_MASK_XTD, 3-7
NC_ATTR_CAN_TX_RESPONSE, 3-18
NC_ATTR_COMM_TYPE, 3-19

See also communication type values.
NC_ATTR_LOG_COMM_ERRS, 3-12
NC_ATTR_PERIOD, 3-19
NC_ATTR_PROTOCOL, 3-7
NC_ATTR_PROTOCOL_VERSION, 3-7
NC_ATTR_READ_MULT_SIZE, 3-13, 3-21
NC_ATTR_READ_PENDING

CAN Network Interface Object, 3-8
CAN Object, 3-20

NC_ATTR_READ_Q_LEN
CAN Network Interface Object, 3-8
CAN Object, 3-20

NC_ATTR_RTSI_FRAME, 3-25, 4-5
NC_ATTR_RTSI_MODE, 3-13, 3-21, 4-2
NC_ATTR_RTSI_SIG_BEHAV, 3-16,

3-24, 4-4
NC_ATTR_RTSI_SIGNAL, 3-16, 3-24
NC_ATTR_RTSI_SIGNAL (RTSI Line

Number), 4-4
NC_ATTR_RTSI_SKIP, 3-17, 3-25, 4-5
NC_ATTR_RX_CHANGES_ONLY, 3-26
NC_ATTR_RX_Q_LEN, 3-11
NC_ATTR_SOFTWARE_VERSION, 3-8
NC_ATTR_START_ON_OPEN, 3-9

NC_ATTR_STATE
CAN Network Interface Object, 3-9
CAN Object, 3-26

NC_ATTR_STATUS
CAN Network Interface Object, 3-10
CAN Object, 3-27

NC_ATTR_WRITE_PENDING
CAN Network Interface Object, 3-10
CAN Object, 3-27

NC_ATTR_WRITE_Q_LEN
CAN Network Interface Object, 3-10
CAN Object, 3-27

NC_ERR_ALREADY_OPEN (0006 Hex)
status code, B-9

NC_ERR_BAD_NAME (0003 Hex) status
code, B-7

NC_ERR_BAD_PARAM (0004 Hex) status
code, B-7

NC_ERR_BAD_VALUE (0005 Hex) status
code, B-8

NC_ERR_CAN_BUS_OFF (0101 Hex) status
code, B-11

NC_ERR_DRIVER (0002 Hex) status
code, B-6

NC_ERR_NOT_STOPPED (0007 Hex) status
code, B-9

NC_ERR_OLD_DATA (0009 Hex) status
code, B-11

NC_ERR_OVERFLOW (0008 Hex) status
code, B-9

NC_ERR_TIMEOUT (0001 Hex) status
code, B-5

NC_RTSI_NONE (Disable RTSI), 4-2
NC_RTSI_OUT_ACTION_ONLY (RTSI

Output on ncAction call), 4-4
NC_RTSI_OUT_ON_RX (RTSI Output on

Receiving CAN frame), 4-3
NC_RTSI_OUT_ON_TX (RTSI Output on

Transmitting CAN frame), 4-4
NC_RTSI_TIME_ON_IN (On RTSI

Input—Timestamp RTSI event), 4-3

Index

NI-CAN Programmer Reference Manual I-4 ni.com

NC_RTSI_TX_ON_IN (On RTSI
Input—Transmit CAN Frame), 4-2

NC_SUCCESS (0000 Hex) status code, B-5
ncAction function, 2-3

CAN Network Interface Object, 2-4
actions supported (table), 2-4

CAN Object, 2-5
actions supported (table), 2-5

description, 2-3
example, 2-5
format, 2-3
input, 2-3
purpose, 2-3
return status, 2-5

ncCloseObject function, 2-6
CAN Network Interface Object, 2-6
CAN Object, 2-6
description, 2-6
example, 2-6
format, 2-6
input, 2-6
purpose, 2-6
return status, 2-6

ncConfig function, 2-7
CAN Network Interface Object, 2-9
CAN Object, 2-9
description, 2-8

using the LabVIEW configuration
functions, 2-8

example, 2-10
format, 2-7
input, 2-8
purpose, 2-7
return status, 2-10

ncCreateNotification function, 2-12
callback description, 2-14
callback parameters, 2-13
callback prototype, 2-13
callback return value, 2-13
CAN Network Interface Object, 2-14
CAN Object, 2-15

description, 2-12
example, 2-15
format, 2-12
input, 2-12
purpose, 2-12
return status, 2-15

ncCreateOccurence function, 2-17
CAN Network Interface Object, 2-18
CAN Object, 2-18
description, 2-17
example, 2-19
format, 2-17
input, 2-17
output, 2-17
purpose, 2-17
return status, 2-18

ncGetAttribute function, 2-20
CAN Network Interface Object, 2-21
CAN Object, 2-21
description, 2-20
example, 2-21
format, 2-20
input, 2-20
output, 2-20
purpose, 2-20
return status, 2-21

ncOpenObject function, 2-22
CAN Network Interface Object, 2-23
CAN Object, 2-23
description, 2-22
examples, 2-24
format, 2-22
input, 2-22
output, 2-22
purpose, 2-22
return status, 2-23

Index

© National Instruments Corporation I-5 NI-CAN Programmer Reference Manual

ncRead function, 2-25
CAN Network Interface Object, 2-27

NCTYPE_CAN_FRAME_TIMED
field names (table), 2-27

CAN Object, 2-28
NCTYPE_CAN_DATA_TIMED

field names (table), 2-29
description, 2-26
examples, 2-29
format, 2-25
input, 2-25
output, 2-25
purpose, 2-25
return status, 2-29

ncReadMult function, 2-30
description, 2-30
examples, 2-32
format, 2-30
input, 2-30
output, 2-30
purpose, 2-30
return status, 2-31

ncReset function, 2-33
description, 2-33
format, 2-33
input, 2-33
purpose, 2-33

ncSetAttribute function, 2-34
CAN Network Interface Object, 2-35
CAN Object, 2-35
description, 2-34
example, 2-35
format, 2-34
input, 2-34
purpose, 2-34
return status, 2-35

NCTYPE_CAN_DATA field names
(table), 2-40

NCTYPE_CAN_DATA_TIMED field names
(table), 2-29

NCTYPE_CAN_FRAME field names
(table), 2-39

NCTYPE_CAN_FRAME_TIMED field
names (table), 2-27

ncWaitForState function, 2-36
description, 2-36
examples, 2-37
format, 2-36
input, 2-36
output, 2-36
purpose, 2-36
return status, 2-37

ncWrite function, 2-38
CAN Network Interface Object, 2-39

NCTYPE_CAN_FRAME field
names (table), 2-39

CAN Object, 2-40
NCTYPE_CAN_DATA field names

(table), 2-40
description, 2-38
examples, 2-41
format, 2-38
input, 2-38
purpose, 2-38
return status, 2-40

NI Developer Zone, C-1
NI-CAN functions, 2-1

CAN Network Interface Object, 2-1
CAN Object, 2-1
description, 2-1
examples, 2-2
format, 2-1
function names, 2-1
input and output, 2-1
list (table), 2-2
ncAction, 2-3
ncCloseObject, 2-6
ncConfig, 2-7
ncCreateNotification, 2-12
ncCreateOccurrence, 2-17
ncGetAttribute, 2-20

Index

NI-CAN Programmer Reference Manual I-6 ni.com

ncOpenObject, 2-22
ncRead, 2-25
ncReadMult, 2-30
ncReset, 2-33
ncSetAttribute, 2-34
ncWaitForState, 2-36
ncWrite, 2-38
purpose, 2-1
return status, 2-1

NI-CAN host data types, 1-1
data types (table), 1-1

NI-CAN object states, A-1
state format (figure), A-1
states (table), A-1

NI-CAN objects, 3-1
attributes, 3-1
CAN Network Interface Object, 3-2
CAN Object, 3-17
description, 3-1
encapsulates, 3-1
object names, 3-1

NI-CAN status codes and qualifiers, B-4
summary of status codes (table), B-4

NI-CAN status format, B-1
checking status in C, B-3
checking status in LabVIEW, B-2
code, B-2
error/warning indicators (severity), B-1

determining severity of status
(table), B-2

format (figure), B-1
qualifier, B-2

Q
qualifiers. See status codes and qualifiers.

R
Receive Periodically Using Remote

(NC_CAN_COMM_RX_
PERIODIC), 3-28

Receive Unsolicited
(NC_CAN_COMM_RX_UNSOL), 3-28

Receive Value by Call Using Remote
(NC_CAN_COMM_RX_BY_CALL), 3-29

related documentation, xii
RTSI programming, 4-1

attributes, 4-2
NC_ATTR_RTSI_FRAME, 4-5
NC_ATTR_RTSI_MODE, 4-2
NC_ATTR_RTSI_SIG_

BEHAV, 4-4
NC_ATTR_RTSI_SIGNAL (RTSI

Line Number), 4-4
NC_ATTR_RTSI_SKIP, 4-5

description, 4-1
examples, 4-5

S
status codes and qualifiers, B-1

checking status
in C/C++, B-3
in LabVIEW, B-2

NC_ERR_ALREADY_OPEN (0006
Hex), B-9

NC_ERR_BAD_NAME (0003 Hex), B-7
NC_ERR_BAD_PARAM (0004

Hex), B-7
NC_ERR_BAD_VALUE (0005

Hex), B-8
NC_ERR_CAN_BUS_OFF (0101

Hex), B-11
NC_ERR_DRIVER (0002 Hex), B-6
NC_ERR_NOT_STOPPED (0007

Hex), B-9
NC_ERR_OLD_DATA (0009

Hex), B-11

Index

© National Instruments Corporation I-7 NI-CAN Programmer Reference Manual

NC_ERR_OVERFLOW (0008 Hex), B-9
NC_ERR_TIMEOUT (0001 Hex), B-5
NC_SUCCESS (0000 Hex), B-5
summary of status codes (table), B-4

summary of status codes (table), B-4
system integration, by National

Instruments, C-1

T
technical support resources, C-1
Transmit Data by Call

(NC_CAN_COMM_TX_BY_CALL), 3-30
Transmit Data Periodically

(NC_CAN_COMM_TX_
PERIODIC), 3-29

Transmit Periodic Waveform
(NC_CAN_COMM_TX_
WAVEFORM), 3-31

Transmit Value by Response Only
(NC_CAN_COMM_TX_RESP_
ONLY), 3-30

U
using this manual set, xi

W
Web support from National Instruments, C-1
worldwide technical support, C-2

	NI-CAN™ Programmer Reference Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Compliance
	Contents
	About This Manual
	How to Use the Manual Set
	Conventions Used in This Manual
	Related Documentation

	Chapter 1 NI-CAN Host Data Types
	Chapter 2 NI-CAN Functions
	ncAction
	ncCloseObject
	ncConfig
	ncCreateNotification
	ncCreateOccurrence
	ncGetAttribute
	ncOpenObject
	ncRead
	ncReadMult
	ncReset
	ncSetAttribute
	ncWaitForState
	ncWrite

	Chapter 3 NI-CAN Objects
	CAN Network Interface Object
	CAN Object

	Chapter 4 RTSI Programming
	Description
	Attributes
	NC_ATTR_RTSI_MODE (RTSI Mode)
	NC_RTSI_NONE (Disable RTSI)
	NC_RTSI_TX_ON_IN (On RTSI Input—Transmit CAN�Frame)
	NC_RTSI_TIME_ON_IN (On RTSI Input—Timestamp RTSI�event)
	NC_RTSI_OUT_ON_RX (RTSI Output on Receiving CAN frame)
	NC_RTSI_OUT_ON_TX (RTSI Output on Transmitting CAN�frame)
	NC_RTSI_OUT_ACTION_ONLY (RTSI Output on ncAction call)
	NC_ATTR_RTSI_SIGNAL (RTSI Line Number)
	NC_ATTR_RTSI_SIG_BEHAV (RTSI Behavior)
	NC_ATTR_RTSI_FRAME (UserRTSIFrame)
	NC_ATTR_RTSI_SKIP (RTSI Skip)

	Examples

	Appendix A NI-CAN Object States
	Appendix B Status Codes and Qualifiers
	Appendix C Technical Support Resources
	Glossary
	A
	B-C
	D-H
	I-M
	N-P
	R-U
	V-W

	Index
	A-C
	D-L
	M-N
	Q-S
	T-W

	Figures
	Figure 3-1. Example of Periodic Transmission
	Figure 3-2. Example of Polling Remote Data Using ncWrite
	Figure 3-3. Example of Periodic Polling of Remote Data
	Figure A-1. State Format
	Figure B-1. Status Format

	Tables
	Table 1-1. NI-CAN Host Data Types
	Table 2-1. NI-CAN Functions
	Table 2-2. Actions Supported by the CAN Network Interface Object
	Table 2-3. Actions Supported by the CAN Object
	Table 2-4. NCTYPE_CAN_FRAME_TIMED Field Names
	Table 2-5. NCTYPE_CAN_DATA_TIMED Field Names
	Table 2-6. NCTYPE_CAN_FRAME Field Names
	Table 2-7. NCTYPE_CAN_DATA Field Name
	Table A-1. NI-CAN Object States
	Table B-1. Determining Severity of Status
	Table B-2. Summary of Status Codes

